
Published as a conference paper at ICLR 2026

SYMMETRY-AWARE BAYESIAN OPTIMIZATION VIA
MAX KERNELS

Anthony Bardou
School of Computer and Communication Sciences
EPFL
Lausanne, Switzerland
anthony.bardou@epfl.ch

Antoine Gonon
Institute of Mathematics
EPFL
Lausanne, Switzerland
antoine.gonon@epfl.ch

Aryan Ahadinia & Patrick Thiran
School of Computer and Communication Sciences
EPFL
Lausanne, Switzerland
{aryan.ahadinia,patrick.thiran}@epfl.ch

ABSTRACT

Bayesian Optimization (BO) is a powerful framework for optimizing noisy,
expensive-to-evaluate black-box functions. When the objective exhibits invari-
ances under a group action, exploiting these symmetries can substantially improve
BO efficiency. While using maximum similarity across group orbits has long been
considered in other domains, the fact that the max kernel is not positive semidefinite
(PSD) has prevented its use in BO. In this work, we revisit this idea by considering
a PSD projection of the max kernel. Compared to existing invariant (and non-
invariant) kernels, we show it achieves significantly lower regret on both synthetic
and real-world BO benchmarks, without increasing computational complexity.

1 INTRODUCTION

Many real-world problems can be framed as the optimization of a noisy, expensive-to-evaluate
black-box function f⋆ : S ⊂ Rd → R. Bayesian Optimization (BO) provides a principled and
sample-efficient framework for tackling this problem, with asymptotic guarantees of global optimality
complementing its empirical success. As a result, BO has been widely adopted across diverse domains
such as robotics (Lizotte et al., 2007), computational biology (Gonzalez et al., 2015) and computer
networks (Bardou et al., 2025).

For a black-box function f⋆ belonging to the Reproducing Kernel Hilbert Space (RKHS) Hk

associated with a kernel k : S × S → R, BO proceeds by placing a Gaussian Process (GP) prior
f ∼ GP(0, k) over functions in Hk. The kernel k determines the covariance structure of the GP and
thus encodes prior assumptions about f⋆. Incorporating suitable prior knowledge can substantially
improve convergence and sample efficiency. In many applications, the objective is known to be
invariant under the action of a group G, that is,

f⋆(x) = f⋆(gx) for all g ∈ G.
For instance, in molecular property prediction, f⋆ may be invariant to rotations of the underlying
molecular structure (Glielmo et al., 2017). In such cases, designing kernels that explicitly incorporate
G-invariance becomes essential.

Ginsbourger et al. (2012) showed that for a centered GP to be G-invariant, its covariance function
must also be invariant under G. Motivated by this, we revisit a simple idea—keep the best alignment
over each orbit—and apply it to BO.

Given a base kernel kb and a symmetry group G, define

kmax(x,x
′) = max

g,g′∈G
kb
(
gx, g′x′), (1)
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so that the similarity between x and x′ is the best alignment over their orbits.

The intuition for using the max-alignment is that when the objective is invariant under a group of
transformations, two inputs can become very similar after applying the right group element, even if
they differ a lot in their original positions. For instance, in an image-based problem with rotation
invariance, two rotated images of the same object (e.g., cats) should in principle be treated similarly
by the optimizer since they correspond to the same objective value. However, most rotations will not
align the images well; and if the optimizer compares images with ℓ2 distances, only a small number
of them can give a good match. In such settings, taking the maximum similarity over all group actions
is natural: among all transformations, typically only one (or a few) reveal a true alignment. Averaging
over all rotations would dilute this information—most transformed pairs look different—whereas
the max retains the one transformation that matters. This “best-alignment” principle is the core
motivation behind kmax and is expected to provide a clearer signal to the optimizer about which
inputs should be treated similarly, compared, e.g., to an averaging approach.

While kmax is symmetric and G-invariant, it is however not guaranteed to be positive semi-definite
(PSD), a property required for the standard Gaussian-process machinery underlying BO (see Sec-
tion 2.1). To address this, we introduce a PSD version of kmax.

A PSD, invariant surrogate via projection + Nyström. On a finite design set D, we form the Gram
matrix of kmax and project it onto the PSD cone (eigenvalue clipping), obtaining K+. Denoting by
K†

+ the Moore-Penrose pseudo-inverse of K+, we then define the G-invariant, PSD kernel

k
(D)
+ (x,x′) = kmax(x,D)K†

+ kmax(D,x′). (2)

Equivalently, k(D)
+ (x,x′) = ϕ(x)⊤ϕ(x′) with features ϕ(x) = K

†/2
+ kmax(D,x), which makes

positive semidefiniteness immediate. By construction, k(D)
+ (i) coincides with kmax on D whenever

kmax is already PSD, and (ii) has per-iteration asymptotic cost comparable to orbit-averaged kernels;
details in Section 3.2.

Results. The max-alignment heuristic does translate into concrete benefits for BO, which we
observe throughout the paper. The resulting kernel is geometrically better aligned with the true
structure of the problem (Figures 1 and 2). In practice, this makes (i) the acquisition function more
faithful as it avoids redundant exploration of points that are already explored up to symmetry, and
(ii) uncertainty modeling also more faithful: it gains confidence in unexplored regions that correspond
to symmetry-equivalent points. Across synthetic benchmarks with finite and continuous groups and a
wireless-network design task, we show that k(D)

+ consistently attains lower cumulative and simple
regret than both the base kernel and the orbit-averaged alternative, with gains increasing with |G|.
Relation with spectral-based theory. Mainstream BO theory links fast eigendecay of the kernel to
small regret upper bounds (Srinivas et al., 2012; Valko et al., 2013; Scarlett et al., 2017; Whitehouse
et al., 2023). Surprisingly, we find the opposite trend in our setting: k(D)

+ typically has a slower
empirical eigendecay than kavg, yet consistently achieves better (lower) regret in practice. This
directly challenges the usual spectral intuition: our results reveal a clear mismatch between spectral
predictions and empirical performance, suggesting that eigendecay alone does not capture the
advantages of k(D)

+ . As we discuss later, geometric considerations (the alignment of the kernel
eigenvectors with the directions that matter for optimization) and approximation hardness of the
blackbox f⋆ in the RKHS likely play an essential role beyond pure spectral rates.

Summary of the contributions. We propose kmax as a max-alignment route to G-invariance, turn it
into a valid GP kernel for BO via PSD projection and Nyström, and show k

(D)
+ is G-invariant, equals

kmax on D when kmax is PSD, and matches the asymptotic cost of orbit-averaged kernels (Section 3).
We demonstrate consistent BO gains over orbit averaging across BO benchmarks (Section 4), and we
analyze why eigendecay alone does not explain these gains (Section 5).
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2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION IN A NUTSHELL

Problem. We seek to maximize an expensive-to-evaluate, black-box objective f⋆ : S→R under the
assumption that f⋆ is in the RKHS Hk of a PSD kernel k : S × S → R. Each query x ∈ S returns a
noisy observation y = f⋆(x) + ε, where ε ∼ N (0, σ2

0). Let Zt = {(xi, yi)}ti=1 denote the dataset
after t evaluations, and write Dt = (x1, . . . ,xt) and yt = (y1, . . . , yt)

⊤.

Surrogate model: the GP prior. BO maintains a probabilistic surrogate f over functions in Hk to
guide sampling of new queries x ∈ S with the goal of converging to argmaxx∈S f

⋆(x). A common
choice is a zero-mean Gaussian process (GP) (Rasmussen & Williams, 2006),

f ∼ GP(0, k),

Conditionally on the dataset of queried points Zt after t evaluations, the posterior f | Zt is still a GP
with posterior mean and covariance

µt(x) = k(x,Dt)
(
Kt + σ2

0It
)−1

yt, (3)

Covt(x,x
′) = k(x,x′)− k(x,Dt)

(
Kt + σ2

0It
)−1

k(Dt,x′), (4)

where Kt = k(Dt,Dt) ∈ Rt×t, It is the t× t identity, and k(x,Dt) = [k(x,x1), . . . , k(x,xt)].

The GP posterior plays the role of a refined surrogate for f⋆ throughout the optimization process. At
iteration t, a BO algorithm:

1. forms the Gram matrix Kt = k(Dt,Dt) using all past queries;
2. computes the inverse of Kt + σ2

0It (with fixed hyperparameter σ0) and plugs it into (3)-(4) to
obtain the posterior mean and covariance functions (µt,Covt);

3. selects the next query by maximizing an acquisition function αt : S → R built from (µt,Covt)
(e.g., GP-UCB (Srinivas et al., 2012) or Expected Improvement (Jones et al., 1998)). This is where
BO balances exploration (learning f⋆) and exploitation (sampling near current optima). The pair
(µt, σ

2
t ) can be viewed as the algorithm’s current best estimate of the unknown function and its

uncertainty.

The dataset is then updated with the new query:

xt+1 ∈ argmax
x∈S

αt(x), yt+1 = f⋆(xt+1) + εt+1,

and the loop repeats until a stopping criterion is met.

Why PSDness of k matters. In this paper, we consider k = kmax and then project it onto a PSD
kernel. Although there is no technical impossibility in running a BO loop with a kernel k that is not
PSD,1 doing so is poorly motivated: the fundamental assumptions underlying BO no longer apply,
and the key quantities lose their meaning. In particular:

• the assumption f⋆ ∈ Hk no longer makes sense because Hk is not defined for non-PSD kernels;
• the usual interpretation of BO as maintaining a GP prior whose posteriors provide increasingly

refined approximations of f⋆ no longer holds (in particular µt and Covt are no longer GP posterior
mean or covariance), since k is not a valid covariance structure for the prior;

• acquisition functions (UCB, EI, etc.) lose their principled exploration-exploitation meaning and
may now behave unpredictably.

Measuring performance with regret. We follow the common practice in BO: for experiments where
f⋆ is known, we measure the regret on the deterministic f⋆ ∈ Hk, and when discussing theoretical
regret bounds we refer to the regret on f ∼ GP(0, k) (Garnett, 2023). In both cases, for h = f or
h = f⋆, the instantaneous regret at timestep t is rt = maxx∈S h(x)− h(xt), the cumulative regret
at horizon T is RT =

∑T
t=1 rt, and the simple regret is sT = maxx∈S h(x) − max1≤t≤T h(xt).

A BO algorithm with a sublinear regret (i.e., RT ∈ o(T )) is called no-regret and offers asymptotic
global optimization guarantees on f⋆. Most standard cumulative regret upper bounds are established

1Only step (2) may fail if Kt + σ2
0It is non-invertible. One can use a pseudo-inverse or a very large σ0, but

the latter makes the posterior variance nearly flat, degenerating the procedure into blind exploitation.
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in terms of the eigendecay of the operator spectrum of the kernel k (Srinivas et al., 2012; Valko et al.,
2013; Scarlett et al., 2017; Whitehouse et al., 2023).

2.2 INVARIANCE IN BAYESIAN OPTIMIZATION

In many applications, the objective function f⋆ is invariant under the action of a known symmetry
group G on S, i.e., f⋆(x) = f⋆(gx) for all g ∈ G. When such invariances are ignored, BO
algorithms may waste evaluations by treating all points within the same |G|-orbit as distinct. Given
a non-invariant base kernel kb and an arbitrary symmetry group G, both provided by the user, this
section reviews existing strategies for incorporating group invariance into BO and positions our
contribution within this literature.

Data augmentation. A popular way to enforce symmetry is to expand the dataset Z itself, as it is
often done in computer vision (Krizhevsky et al., 2012). For each acquired observation (xt, yt), one
augments Z with all transformed copies {(gxt, yt)}g∈G , while leaving the base kernel kb unchanged.
However, since BO scales as O(|Z|3), this approach quickly becomes computationally prohibitive
and is inapplicable to continuous symmetry groups. For completeness, we include in Appendix F
a numerical comparison of our approach with data augmentation, showing that data augmentation
scales poorly with the size of the group, and does not meet the performance of the average or max
kernel even when using all symmetry augmentations.

Search space restriction. Another approach is to restrict the search domain to a fundamental region
SG ⊆ S whose G-orbit covers S:

⋃
g∈G gSG = S (e.g., Baird et al. (2023b)). For example, if

S = [−1, 1]2 and G is the group of π/2-rotations, one may work on SG = [0, 1]2 while keeping the
kernel unchanged. This viewpoint corresponds to working directly with the quotient S/G embedded
in S .

This line of work is complementary to ours. In BO, one must choose both a search domain and a
kernel: fundamental domains address the former, while our construction helps with the latter. Even if
we decide to run BO on SG , one still needs a good invariant kernel on SG , and our invariant kernels
can be used in that setting as well. We refer to Appendix G for a short example illustrating the
practical difficulties of explicitly optimizing over a fundamental domain, and how the design of the
kernel is complementary to that decision.

Invariant kernels. A principled way to incorporate prior G-invariance of f⋆ is to consider a G-
invariant GP prior f , i.e., a GP whose sample paths x ∈ S 7→ f(x, ω) obtained by fixing one outcome
ω in the probability space are themselves invariant under G. Ginsbourger et al. (2012) established that
such GPs necessarily admit a G-invariant covariance function2, meaning k(gx, g′x′) = k(x,x′) for
all x,x′ ∈ S and g, g′ ∈ G. The central question then becomes: how can one construct an invariant
kernel k from an arbitrary base kernel kb and symmetry group G? An elegant solution, dating back to
Kondor (2008) and recently advocated for BO by Brown et al. (2024), is to average kb over G-orbits:

kavg(x,x
′) =

1

|G|2
∑
g,g′∈G

kb(gx, g
′x′). (5)

This construction is not only guaranteed to be G-invariant, but also admits a clean functional in-
terpretation: if Hkb and Hkavg denote the RKHS induced by kb and kavg respectively, then Hkavg
coincides exactly with the subspace of G-invariant functions in Hkb (Theorem 4.4.3 in Kondor
(2008)). Consequently, kavg (up to normalization) has gained popularity as the standard off-the-shelf
kernel for BO in symmetric settings (Glielmo et al., 2017; Kim et al., 2021; Brown et al., 2024).

A complementary idea in kernel methods is to retain the best latent alignment between two orbits via
a maximum, as in convolution/best-match kernels for structured data (Gärtner, 2003; Vishwanathan
et al., 2003) and follow-up work across domains (Fröhlich et al., 2005; Zhang, 2010; Curtin et al.,
2013). Max-alignment kernels, however, are not PSD in general, leading to indefinite Gram matrices.
This has motivated two families of remedies: (i) explicit Kreı̆n-space formulations (Ong et al., 2004;
Oglic & Gärtner, 2018), and (ii) simple PSD corrections such as eigenvalue clipping/flipping in
SVMs (Luss & D' aspremont, 2007; Chen et al., 2009), which are empirically effective.

2Up to modification, i.e., there is another GP f ′ such that for every x ∈ S, P(f(x) = f ′(x)) = 1 and f ′

has invariant paths and invariant covariance, see Property 3.3 in Ginsbourger et al. (2012).
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Our adaptation to BO. Guided by the above, we adopt the max-alignment view for BO. To ensure
positive definiteness, we project kmax (see (1)) onto a PSD kernel k(D)

+ , which coincides with kmax

whenever the latter is already PSD. This preserves the sharp, high-contrast orbit alignments of kmax

while ensuring compatibility with the BO framework. Moreover, it maintains a per-iteration BO
complexity comparable to that of orbit-averaged kernels (see Section 2.2). In our experiments, k(D)

+
better reflects the intended symmetries of standard synthetic objectives and achieves substantially
lower cumulative regret. Interestingly, these empirical gains are not mirrored by existing eigendecay-
based upper bounds, a point we return to in Section 5.

3 THE MAX KERNEL

We have introduced the max-alignment kernel kmax and its PSD surrogate k(D)
+ in (2). This section

explains why kmax is a natural G-invariant covariance, clarifies how it differs from orbit averaging
through examples, and records the practical PSD construction we use in BO.

3.1 MOTIVATION: kmax AS A VALID COVARIANCE

A natural way to motivate kmax is to exhibit G-invariant GPs whose covariance equals kmax.

Construction. Let h ∼ GP(0, kb) with an isotropic base kernel kb(x,x′) = κ(∥x− x′∥2) with κ
nonincreasing (e.g., popular ones such as RBF, Matérn). Consider a map ϕG such that (i) ϕG(x) =
ϕG(gx) for all g ∈ G and (ii) ∥ϕG(x)−ϕG(x′)∥2 = ming,g′ ∥gx−g′x′∥2. Define f(x) = h(ϕG(x)).
Then f is G-invariant and:
Proposition 1. Under the construction above, f ∼ GP(0, kmax) with kmax given by (1).

Proof sketch, details in Appendix A. Cov(f(x), f(x′))
deff
= kb(ϕG(x), ϕG(x

′))
(ii)
= κ(ming,g′ ∥gx−

g′x′∥2), and monotonicity of κ converts the min-distance into maxg,g′ kb(gx, g
′x′).

This shows that kmax naturally arises as the covariance of valid G-invariant GPs. In contrast, the
common approach to invariance in BO is to build kavg by averaging a base kernel as in (5). But
averaging and maximization induce fundamentally different geometries:
Lemma 2. For any base kernel kb and any (double) orbit O(x,x′) := {(gx, g′x′), g, g′ ∈ G},
kavg = kmax on O(x,x′) if and only if kb = kmax on that orbit.

Indeed, an average reaches the maximum only when every term is maximal. Thus kavg can never
reproduce the geometry of kmax, except in the degenerate case where the base kernel is already
kmax, making averaging redundant. One might wonder whether this limitation of kavg could be
circumvented by building it from a different base kernel than the one used for kmax. In Appendix A.2
we show that, under mild assumptions satisfied by standard kernels (upper-bounded by 1, with
equality k(x,x) = 1 along the diagonal), kavg and kmax can coincide only in the trivial case where
the base kernel of kavg is already invariant for pairs of points belonging to the same orbit. Thus, even
in this more general setting, averaging does not reproduce the geometry of maximization (except if
the base kernel already had invariances).

To make this contrast concrete, we now examine a simple example (radial invariance with an RBF
base kernel) where kmax and kavg can be computed in closed form.
Example 3 (Radial invariance with kmax). Let G be the group of planar rotations and kb(x,x′) =
exp
(
−∥x− x′∥22/2l2

)
be an RBF kernel. With ϕG(x) = ∥x∥2,

kmax(x,x
′) = exp

(
−(∥x∥2 − ∥x′∥2)2/2l2

)
, kavg(x,x

′) = exp
(
−∥x∥2

2+∥x′∥2
2

2l2

)
I0

(
∥x∥2∥x′∥2

l2

)
,

with I0 the modified Bessel function (derivation in Appendix B). As illustrated in Figure 1, the
two kernels kmax and kavg induce qualitatively different similarity structures. By construction,
kmax assigns large similarity whenever ∥x∥2 ≈ ∥x′∥2. If ∥x∥2 = ∥x′∥2, the function f⋆ satisfies
f⋆(x) = f⋆(x′) since it is invariant under rotations, and kmax exactly recovers this invariance by
assigning maximal similarity kmax(x,x

′) = 1. In contrast, kavg only approximates this behavior:
its iso-similarity curves as a function of (∥x∥2, ∥x′∥2) correspond to distorted balls, and two points
with identical norms may be ranked as highly dissimilar (see the diagonal ∥x∥2 = ∥x′∥2 of the right
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Radial-Invariant Function

||x||2

||x
′ ||

2

kavg(x, x′)

||x||2

||x
′ ||

2

kmax(x, x′)

Figure 1: (Left) A two-dimensional function f⋆(x) invariant under planar rotations (see (16)): if
∥x∥2 = ∥x′∥2, then f⋆(x) = f⋆(x′). (Center/Right) Rotation-invariant kernels derived from an
RBF base kernel (lengthscale 1/2), visualized as a function of (∥x∥2, ∥x′∥2). kmax (center) captures
the correct invariance, while kavg (right) only approximates it.

Table 1: Complexity per BO iteration. Here |G|∗ denotes either |G| or |G|2 depending on whether the
orbit terms reduce to a single sum (when kb(gx,x′) suffices) or require a double sum over (g, g′); m
is the number of candidate points used in acquisition optimization. The row Per-candidate acquisition
evaluation gives the cost of a single acquisition evaluation; for one BO iteration this row is multiplied
by m and added to the other rows to obtain the total.

Base kernel kb Averaged kavg Projected k(D)
+

Gram matrix (n× n) O(n2) O(n2|G|∗) O(n2|G|∗)
SVD / inversion O(n3) O(n3) O(n3)
PSD projection – – O(n3)5

Per-candidate acq. eval. O(1) O(|G|∗) O(n|G|∗)
Total for 1 BO iteration O(m+ n2 + n3) O((m+ n2)|G|∗ + n3) O((mn+ n2)|G|∗ + n3)

plot in Figure 1). This mismatch highlights that while both constructions enforce rotation invariance,
only kmax preserves the correct notion of similarity.

3.2 A PSD EXTENSION OF kmax: WHAT WE USE IN PRACTICE

Because kmax is not PSD in general, we apply a standard projection step on the finite design set
D = {x1, . . . ,xn}. Let K = kmax(D,D) with eigendecomposition K = QΛQ⊤ and define3

(with the max applied elementwise)

K+ = Q max(0,Λ)Q⊤. (6)

We then use the Nyström extension4 (Williams & Seeger, 2000) to evaluate cross-covariances with
new points, yielding the PSD, G-invariant surrogate k(D)

+ given in (2) and that we reproduce here:

k
(D)
+ (x,x′) := kmax(x,D)K†

+ kmax(D,x′). (7)

Key properties of k(D)
+ :

• PSD & invariance. k(D)
+ is PSD and inherits argumentwise G-invariance6 of kmax.

• Consistency with kmax. If K ⪰ 0, then K+ = K and k(D)
+ agrees with kmax on D ×D.

• Cost. Each BO iteration involves (i) building the Gram matrix on D, (ii) inverting the Gram matrix
to build the acquisition function, and (iii) m kernel evaluations when optimizing the acquisition
function. Step (ii) has the same cost as the SVD of K needed to compute both K+ and K†

+, which
makes k(D)

+ having the same asymptotic per-iteration cost as kavg; its per-query evaluations are

3K+ does not depend on the choice of the eigendecomposition, see Lemma 7 in the appendix.
4It indeed extends K+ since k

(D)
+ (xi,xj) = Ki,: K

†
+ K:,j = (KK†

+K)ij = (K+)ij .
5One SVD of K suffices to obtain both K+ and K†

+, so the extra PSD projection does not increase
asymptotic cost.

6kmax(gx,x
′) = kmax(x,x

′) implies kmax(gx,D) = kmax(x,D), hence invariance of k(D)
+ .
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more expensive, but this difference is negligible as long as we keep m ≲ n. A concise complexity
summary is provided in Table 1, and example of runtimes in Table 3.

• Regularity. For finite groups, kmax is a max of finitely many smooth maps and is almost every-
where (a.e.) differentiable; the Nyström extension preserves a.e. differentiability in each argument.
For continuous groups, smoothness can sometimes be obtained via closed-form formulas (e.g., as
in Example 3).

We now illustrate the behavior of k(D)
+ versus kavg (in this situation, kmax is not PSD and the

projection step is indeed needed to restore positive semidefiniteness).

Example 4 (Ackley function with k+). Figure 2 compares k(D)
+ and kavg on the one-dimensional

Ackley function (see (15)). The projected kernel k(D)
+ preserves the expected pairwise symmetries

(invariance along x = y and x = −y) and spreads mass more evenly across the symmetric regions,
whereas kavg concentrates covariance mostly near the origin. Thus, k(D)

+ better reflects the symmetry
geometry of the problem, echoing the qualitative difference observed in Example 3.
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Figure 2: (Left) One-dimensional Ackley function f⋆ (see (15)), invariant up to coordinate-wise
sign-flips, and GP posterior means µt(x) as in (3) for k(D)

+ (orange diamond) and kavg (green circles)
built from D (black crosses). (Center) Covariance structure induced by k(D)

+ . (Right) Covariance
structure induced by kavg. Both kernels are invariant to reflections across x = y and x = −y, but
kavg concentrates covariance near 0, while k(D)

+ better reflects the underlying symmetry geometry.
Consequently, the GP posterior mean induced by k(D)

+ is the best at fitting the objective (left).

Beyond the finite view (details in Appendix C). The PSD projection with Nyström in Equation (7) is
a practical, data-dependent construction. It can be seen as the finite-sample face of a broader, intrinsic
definition that does not depend on D. Since kmax is symmetric, it admits a spectral decomposition
kmax(x,x

′) =
∑
i λiϕi(x)ϕi(x

′) in L2, and we can always define (a.e.)

k+(x,x
′) :=

∑
i

max(0, λi)ϕi(x)ϕi(x
′),

with k+ = kmax whenever kmax is already PSD. On finite domains, this precisely reduces to the
matrix PSD projection in (6). In Appendix C we formalize the infinite-domain construction via
integral operators, prove that k+ is G-invariant, and show that the finite projection + Nyström in (7)
converges to k+ at the spectral (Hilbert-Schmidt) level under iid sampling (Appendix C.3).

Takeaway. kmax is the exact covariance of a natural class of G-invariant GPs and induces a search
geometry that preserves high-contrast orbit alignments (Examples 3 and 4). The PSD projection +
Nyström step yields a valid GP kernel k(D)

+ without introducing extra asymptotic complexity. We
now measure its practical impact in Section 4.

4 EXPERIMENTS

We evaluate k(D)
+ against two baselines: (i) the off-the-shelf kernel kb (no symmetry handling), and

(ii) the orbit-averaged kernel kavg (Brown et al., 2024). Benchmarks include standard synthetic
objectives and two real-world tasks with known invariances (a wireless network design task and a
particle packing problem). We ask: (Q1) Does k(D)

+ reduce simple/cumulative regret vs. kavg? and
(Q2) How does performance scale with the size of the symmetry group and dimension? The full
experimental setup is described in Appendix E.

7
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Table 2: Performance of kb, kavg, and k(D)
+ across benchmarks. For each kernel k ∈ {kb, kavg, k(D)

+ }
we report m ± serr, where m is the empirical mean over 10 seeds (lower is better) and serr is the
empirical standard error. Best mean is bold; means m whose 95% confidence interval (m± 1.96serr)
confidence interval overlap with the best are underlined. Performance is measured by cumulative
regret on synthetic benchmarks and by negated simple reward on real-world experiments.

Benchmark |G| kb kavg k
(D)
+

Synthetic (Cumulative Reg.)
Ackley2d 8 382.7± 5.7 128.2± 10.4 126.4± 3.6
Griewank6d 64 3840.3± 177.7 3067.4± 841.9 1832.6± 146.3
Rastrigin5d 3, 840 3568.5± 91.3 1583.5± 341.9 813.4± 70.6
Radial2d ∞ 388.6± 20.3 480.9± 76.4 199.7± 11.6
Scaling2d ∞ 1820.6± 1135.4 3361.8± 742.9 25.4± 6.4

Real-World (Neg. Simple Rew.)
WLAN8d 24 −65.0± 3.2 −51.8± 1.7 −74.4± 0.7
PartPack6d ∞ −0.79± 0.10 −0.69± 0.01 −0.92± 0.10
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Figure 3: Cumulative regret and negated simple reward under GP-UCB with kb (blue crosses),
kavg (orange diamonds), and k(D)

+ (green circles) on a selection of benchmarks (all benchmarks in
Appendix E). Shaded regions show the standard error (±serr) over 10 seeds.

Headline: k(D)
+ wins on every task. Across all benchmarks (Table 2), k(D)

+ achieves the best
performance with up to 50% of improvement. This answers Q1 positively. Regarding Q2, we will see
that as the group size increases, k(D)

+ stays strong, while kavg degrades and can even underperform
the non-invariant base kernel kb.

Setup in one glance. We run GP-UCB with each kernel k ∈ {kb, kavg, k(D)
+ }, using the same acqui-

sition and optimization budgets. We report results averaged over 10 seeds. All the hyperparameters
and group actions are detailed in Appendix E.

4.1 SYNTHETIC BENCHMARKS

We consider synthetic functions f⋆ (Ackley, Griewank, Rastrigin, etc.) that exhibit symmetries
(such as permutations, coordinate-wise sign-flips, rotations, rescaling) and are classically considered
as challenging to optimize in the BO literature (Qian et al., 2021; Bardou et al., 2024). We cover
dimensions d = 2 to d = 6 and group sizes |G| = 8 to |G| = ∞. We evaluate performance
using the cumulative regret RT =

∑T
i=1

(
f⋆(x∗) − f⋆(xt)

)
since the global maximizer x∗ =

argmaxx∈S f
⋆(x) is known.

Finite groups: the gap widens as |G| grows. With Matérn-5/2 base kb on Ackley2d (|G|=8), kavg
and k(D)

+ are tied; both dominate kb. As |G| increases (Griewank6d, |G|=64; Rastrigin5d, |G|=3,840),
k
(D)
+ increasingly outperforms kavg achieving cumulative regrets that are, on average, 40% and 49%

lower respectively (Table 2, Figure 3 left panel, and Appendix E for the whole set of figures).

Continuous groups: kavg can underperform even kb. For radial and scaling invariances (continuous
groups; RBF base), kavg degrades relative to kb, while k(D)

+ remains strong (Figure 3 center panel,
and Appendix E for the whole set of figures).
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Figure 4: Left column: Final average regret RT /T for kb (blue crosses), kavg (orange diamonds),
and k(D)

+ (green circles) on Ackley (top) and Rastrigin (bottom), averaged over 10 seeds with standard
error bars. Middle and right columns: Empirical eigendecays under different bases and groups
(ordered eigenvalues of the Gram-matrix divided by n), typical behavior on a single seed.

4.2 REAL-WORLD EXPERIMENTS

We consider two real-world experiments that are described in detail in Appendix E: the design of
a wireless network (8-dimensional, invariant to permutations of pairs of parameters) and a particle
packing problem (6-dimensional, invariant to the rescaling of some parameters and to permutations
of pairs of parameters). For both benchmarks, performance is evaluated using the negated best reward
mint∈[T ] −f⋆(xt) attained during optimization (the regret cannot be computed because the max of
f⋆ is unknown). Note that we consider mint∈[T ] −f⋆(xt) instead of the cumulated −

∑
t f

⋆(xt)
because the goal is to assess the quality of the best combination of parameters discovered by the
optimizer, rather than the cumulative negative reward across all explored combinations.

k
(D)
+ finds better combinations of parameters. For the design of a wireless network or for the

particle packing problem, k(D)
+ consistently discovers combinations of parameters with larger utility

than both kavg and kb (Figure 3 right; Appendix E for more figures).

4.3 ROBUSTNESS TO GROUP SIZE

Both synthetic and real-world benchmarks suggest that kavg performs comparably to k(D)
+ when

the group size |G| is small, but its performance deteriorates as |G| grows, whereas k(D)
+ remains

stable. To investigate this effect more systematically, we conduct additional experiments on the
d-dimensional Ackley and Rastrigin benchmarks, each invariant under the hyperoctahedral group
G of size |G| = 2dd! (permutations × coordinate-wise sign-flips). We compare the average regret
of kavg and k(D)

+ after 50 iterations of GP-UCB for dimensions d = 1, . . . , 5, and include kb as a
baseline to control for the effect of increasing d.

The results are shown in Figure 4 (left column) . Both experiments reveal the same trend: while
kavg consistently outperforms kb, its performance also deteriorates as |G| increases. In contrast, k(D)

+
remains largely unaffected by the growing number of symmetries, demonstrating a clear robustness
to group size. In the next section, we discuss several explanations for these empirical observations.

Takeaway. k(D)
+ consistently matches or outperforms kavg and kb, with the largest gains at large |G|.

The evidence suggests that (i) how a kernel encodes orbit alignments matters as much as whether
it is invariant, and (ii) averaging across many alignments can dilute informative similarities. These
themes reconnect with our discussion in Section 5 and motivate analyses beyond eigendecay rates.
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5 SPECTRAL ANALYSIS AND REGRET BOUNDS

So far, k(D)
+ has shown consistently lower regret than kavg, despite comparable computational cost.

A natural question is: can existing BO theory account for such a gap? Current regret bounds for GP
surrogates proceed via the information gain, which is shaped by the decay of the operator spectrum
of the kernel. In particular, faster spectral decay leads to tighter regret upper bounds in standard
analyses (Srinivas et al., 2012; Valko et al., 2013; Scarlett et al., 2017; Whitehouse et al., 2023). We
now compare the eigendecay of k(D)

+ and kavg, and ask whether it can explain the empirical gap.

Empirical eigendecays: similar or faster decay for kavg. Across our benchmarks, the empirical
spectra of k(D)

+ and kavg exhibit very similar log–log slopes (decay rates). In several settings, kavg’s
eigenvalues decay even faster than those of k+; see Figure 4 (middle and right columns). Under
the usual theory, this would translate into similar, or potentially tighter, upper bounds for methods
run with kavg compared to those with k(D)

+ . A more detailed discussion of the empirical spectra in
Figure 4 and further insights are in Appendix D.

Limitations of eigendecay as an explanation. Since kavg matches or exceeds k(D)
+ in empirical

decay rate, standard theory would predict similar or better regret upper bounds. Yet in practice we
consistently observe lower regret for k(D)

+ (Section 4). This suggests that eigendecay alone does not
capture the structural advantages of k(D)

+ . We outline possible explanations in the conclusion.

6 CONCLUSION

Our spectral analysis highlights a gap between theory and practice: although kavg often exhibits faster
empirical eigendecay than k(D)

+ , the latter consistently achieves lower regret. Standard eigendecay
arguments thus fail to explain the observed advantage of k(D)

+ . We hypothesize two complementary
explanations.

First, geometry vs. rates: eigendecay quantifies how fast spectra shrink but ignores which eigenfunc-
tions are emphasized. In practice, kavg often introduces similarity reversals, distorting the search
geometry (Figure 1), whereas k(D)

+ preserves high-contrast alignments between orbits, inherited from
kmax.

Second, approximation hardness: BO theory typically assumes that the black-box f⋆ lies in the
RKHS Hk of the chosen kernel k. Existing work on misspecification (Bogunovic & Krause, 2021)
shows that the cumulative regret can be bounded from below by a linear term that involves the
distance between f⋆ and Hk. Yet even when this distance is zero, different kernels may yield
very different approximation rates, affecting how quickly BO can optimize f⋆. This distinction
matters: in our experiments with the RBF kernel as kb (Section 4), Hkb is universal (property
of the RBF kernel, see Micchelli et al. (2006)), hence invariant functions f⋆ always lie in Hkavg
(consider (Pf)(x) =

∑
g∈G f(gx)/|G| the projection onto Hkavg (Brown et al., 2024, Appendix

A) and observe that if fn → f⋆ with fn ∈ Hkb then Pfn → f⋆ with Pfn ∈ Hkavg ). There is
no misspecification in the sense of Bogunovic & Krause (2021) since d(f⋆,Hkavg) = 0, yet kavg
still performs worse than k(D)

+ . This suggests that f⋆ is simply harder to approximate in Hkavg
than in Hkmax . A plausible reason why Brown et al. (2024) report strong performance for kavg is
that they focus on functions that are explicit linear combinations of relatively few kavg(xt, ·) atoms
(between 64 and 512, depending on dimension; see their Appendix B.1). In such settings, kavg looks
very effective since its GP posterior mean can in principle recover the function exactly once those
xt are sampled. Typical BO objectives do not share this structure, which may explain why in our
experiments kavg sometimes underperforms even the base kernel, while k(D)

+ remains more reliable.
Developing regret bounds that also measure approximation hardness, capturing both the distance to
Hk and approximation rates, seems a promising way to obtain guarantees that align more closely
with empirical performance.

Finally, while our focus has been empirical, we note that the intrinsic data-independent version of
k
(D)
+ , which we called k+ and which we mentioned at the end of Section 3.2 (introduced formally

in Appendix C), provides a natural, data-independent analogue of the practical kernel k(D)
+ . We see
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k+ as a convenient object for future theoretical work, as it cleanly isolates the PSD projection of
kmax from the additional data dependence introduced by Nyström. We believe that it makes k+ a
convenient starting point for any future theoretical work, in the same spirit as gradient flow serving as
an idealized analogue of gradient descent.
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Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD explorations newsletter, 5
(1):49–58, 2003.

David Ginsbourger, Xavier Bay, Olivier Roustant, and Laurent Carraro. Argumentwise invariant
kernels for the approximation of invariant functions. Ann. Fac. Sci. Toulouse Math. (6), 21(3):
501–527, 2012. ISSN 0240-2963,2258-7519. doi: 10.5802/afst.1343. URL https://doi.
org/10.5802/afst.1343.

Aldo Glielmo, Peter Sollich, and Alessandro De Vita. Accurate interatomic force fields via machine
learning with covariant kernels. Physical Review B, 95(21):214302, 2017.

Javier Gonzalez, Joseph Longworth, David C James, and Neil D Lawrence. Bayesian optimization
for synthetic gene design. arXiv preprint arXiv:1505.01627, 2015.

Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear
Algebra and its Applications, 103:103–118, 1988. ISSN 0024-3795. doi: https://doi.org/
10.1016/0024-3795(88)90223-6. URL https://www.sciencedirect.com/science/
article/pii/0024379588902236.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Jungtaek Kim, Michael McCourt, Tackgeun You, Saehoon Kim, and Seungjin Choi. Bayesian
optimization with approximate set kernels. Machine Learning, 110(5):857–879, 2021.
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A PROOFS FOR SECTION 3

A.1 FULL STATEMENT AND PROOF OF PROPOSITION 1

We state Proposition 1 formally and give a slightly more detailed proof.
Proposition 5 (Max-kernel covariance for invariant GPs). Let S,Sh ⊂ Rd be measurable spaces and
let a (finite or compact) group G act measurably on S. Let h ∼ GP(0, kb) be a GP on Sh with an
isotropic base kernel kb : (x,x′) ∈ S×S 7→ κ(∥x−x′∥2) where κ : R≥0 → R≥0 is nonincreasing.
Assume there exists ϕG : S → Sh satisfying (i) invariance: ϕG(x) = ϕG(gx) for all g ∈ G,x ∈ S;
and (ii) minimal-distance representativity: ∥ϕG(x)− ϕG(x

′)∥2 = ming,g′∈G ∥gx− g′x′∥2. Define
f(x) = h(ϕG(x)). Then f ∼ GP(0, kmax) and it is G-invariant.

Proof. Since g is a GP, f is also a GP, and invariance follows from (i). Its covariance kernel is kmax

since:

Cov [f(x), f(x′)] = Cov [h(ϕG(x)), h(ϕG(x
′))]

= kb(ϕG(x), ϕG(x
′))

= κ( min
g,g′∈G

||gx− g′x′||2) (8)

= max
g,g′∈G

κ(||gx− g′x′||2) (9)

= kmax(x,x
′) (10)

where we used (ii) in Equation (8), and monotonicity of κ in Equation (9). Note that compactness of
G guarantees that the minimum in (ii) is indeed achieved, which makes Equation (9) true even when
κ is not necessarily continuous.

A.2 AVERAGING VS MAXIMIZATION WITH DIFFERENT BASE KERNELS

We extend Lemma 2 to the case where kavg and kmax are built from different base kernels. The result
shows that even in this more flexible setting, the coincidence of kavg and kmax can only occur in
degenerate situations.
Lemma 6. Let kb and k′b be two base kernels such that ∥kb∥∞ = ∥k′b∥∞ = 1 and k′b(x,x) = 1 for
all x. Let kavg be the group-averaged kernel built from kb and kmax be the maximization kernel built
from k′b. It holds

kavg = kmax on the orbit O(x, gx) := {(hx, h′gx), h, h′ ∈ G}
for every x ∈ X and g ∈ G, if and only if

kb(x, gx) = kmax(x, gx) = 1 for every x and g ∈ G.
In particular, this forces kb to already exhibit a form of G-invariance on pairs (x, gx).

Proof. (⇒) Fix x and g ∈ G. Since by assumption k′b is bounded by 1 and k′b(x,x) = 1:

1 ≥ kmax(x, gx) = max
h,h′∈G

k′b(hx, h
′gx) ≥ k′b(x,x) = 1

so kmax(x, gx) = 1.

Now consider kavg. By definition,

kavg(x, gx) =
1

|G|2
∑

h,h′∈G

kb(hx, h
′gx).

Each summand is bounded by 1 and the average is equal to 1 as kavg(x, gx) = kmax(x, gx) = 1.
Therefore each term is equal to 1, which proves kb = kmax = 1 on O(x, gx). As this is true for
every x, g ∈ G, this shows the result. The converse is immediate.

This shows that even when allowing different base kernels for kavg and kmax, equality between
the two kernels requires kb to already be argumentwise G-invariant on pairs (x, gx). This fails for
standard choices (e.g. RBF kernels with translation or rotation groups), so averaging cannot replicate
maximization in practice.

14



Published as a conference paper at ICLR 2026

B RADIAL INVARIANCE: CLOSED FORM FOR kavg

We prove the formulas provided in Example 3. Let G = SO(2) act on R2 by in-plane rotations,
and let kb be the RBF kernel with lengthscale l: kb(x,x′) = exp

(
− ∥x − x′∥22/(2l2)

)
. Writing

x = (r, θ) and x′ = (s, φ) in polar coordinates, we have

kavg(x,x
′) =

1

(2π)2

∫ 2π

0

∫ 2π

0

exp
(
− r2+s2−2rs cos(θ−φ+α−β)

2l2

)
dα dβ.

Integrating out the absolute angle and keeping only the relative angle ψ = θ − φ+ α− β yields

kavg(x,x
′) = exp

(
− r2+s2

2l2

)
· 1

2π

∫ 2π

0

exp
(
rs
l2 cosψ

)
dψ = exp

(
− r2+s2

2l2

)
I0
(
rs
l2

)
,

where I0(z) = 1
2π

∫ 2π

0
ez cosψ dψ is the modified Bessel function of order 0.

C AN INTRINSIC PSD PROJECTION k+ AND ITS PROPERTIES

In the main text we defined a data-dependent kernel k(D)
+ , corresponding to a PSD projection of kmax

on a finite set of samples D, extended by Nyström. This finite-sample construction k(D)
+ is the star

of the show in practice (as it is convenient to compute, and shows strong performance in practice).
However, its data-dependence might make theoretical analysis quite involved. In this appendix, we
show that k(D)

+ is the finite-sample facet of a broader, intrinsic data-independent PSD projection
k+ of kmax which (i) preserves the G-invariance of kmax, (ii) coincides with kmax whenever kmax

is already PSD. Since the PSD projection of kmax discussed here can also be applied to any other
indefinite kernel k, we directly introduce it for an arbitrary kernel k.

We begin as a warmup with the finite-domain “matrix” construction to build intuition, and then lift it
to general domains via integral operators.

C.1 WARMUP: FINITE DOMAINS

We start on a finite domain S to build intuition. In that case, k+ is simply Frobenius-nearest PSD
truncation of the Gram matrix on the full domain S, which is unique, basis-independent, preserves
G-invariance, and coincides with k when k is already PSD.

Let S = {x1, . . . ,xN} be finite, and let G act on S. Consider any symmetric kernel k on S with
Gram matrix K ∈ RN×N (possibly indefinite) given by Kij = k(xi,xj). We define k+ as the
kernel corresponding to the Frobenius-nearest PSD projection of K (Higham, 1988).
Lemma 7 (Frobenius PSD projection and explicit form (Higham, 1988)). The optimization problem
K+ := argminP⪰0 ∥P − K∥F has a unique solution and, for any eigendecomposition K =

QΛQ⊤, it is given by

K+ = Q max(0,Λ)Q⊤,

where max(0, ·) acts entrywise on Λ. In particular, the matrix K+ depends only on K (not on the
chosen eigenbasis), satisfies K+ ⪰ 0, and K+ = K iff K ⪰ 0.

We define k+, the (Frobenius) PSD projection of k, as:

k+(xi, xj) := (K+)ij , i, j ∈ [N ]. (11)

Inheritance of G-invariance. Each element g ∈ G induces a permutation of the elements of S: let
πg be the permutations of the integers j ∈ {1, . . . , N} defined by gxj = xπg(j). Denote by Pg the
permutation matrix associated with πg. For every vector v, the matrix Pg acts as (Pgv)i = vπ−1

g (i)

which is equivalent to the action on canonical vectors Pgej = eπg(j) or (Pg)ij = 1i=πg(j).

Invariance in the first component guarantees kmax(xπg(i),xj) = kmax(gxi,xj) = kmax(xi,xj) for
every i, j ∈ {1, . . . , N}, i.e., the rows of K = (k(xi,xj))i,j are invariant under the permutation πg ,
hence PgK = K. Thus, for any positive integer m, PgKm = (PgK)Km−1 = Km so for any
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polynomial p such that p(0) = 0, Pgp(K) = p(K). Now consider a sequence (pn)n of polynomials
such that7 pn(0) = 0 and |pn(λ) − max(0, λ)| →

n→∞
0 for any λ in the spectrum of K. In the

limit PgK+ = K+, hence k+ is invariant under the action of G on the first variable (k+(gx,x′) =
k+(x,x

′)), and invariance along the second one follows by symmetry (K+P
⊤
g = K+). This shows

that k+ inherits from the G-invariance of k (equivalently, PgK = K = KP⊤
g for all g). We collect

this result in the next lemma.
Lemma 8 (Invariance is preserved by the projection). Consider g ∈ G. If PgK = K, then
PgK+ = K+ = K+P

⊤
g . Hence the projected kernel k+ is G-invariant on S × S .

Relation to the practical Nyström kernel. If the set D = {x1, . . . ,xn} used to build k(D)
+ (Equa-

tion (7)) equals the whole domain D = S, then k(D)
+ = k+. Indeed, k(D)

+ (xi,xj) = Ki:K
†
+K:j =

(KK†
+K)ij = (K+)ij on D ×D, and the latter is the definition of k+ on finite domains.

We now generalize the matrix considerations above using integral operators. The finite-domain
construction is recovered as a special case.

C.2 GENERAL DEFINITION (VIA INTEGRAL OPERATORS THEORY)

We lift the finite-domain construction of the previous subsection to general domains by viewing
k as a Hilbert–Schmidt operator and defining k+ as the positive part of Tk; this yields a PSD,
data-independent kernel that inherits any G-invariance and equals k whenever k is PSD.

Let (S, T , µ) be a probability space. For a measurable, symmetric kernel k : S × S → R with
k ∈ L2(µ⊗ µ), let the (compact, self-adjoint) Hilbert-Schmidt operator Tk : L2(µ) → L2(µ) be

(Tkf)(x) =

∫
S
k(x,x′) f(x′) dµ(x′).

(Note that in the finite-domain case, f is a vector indexed by the domain and if µ is the uniform
measure then Tk is simply multiplication by the Gram matrix K normalized by the domain size.) By
the spectral theorem, there exist (λi, ϕi)i≥1 with {ϕi} orthonormal in L2(µ) and (λi) ∈ ℓ2 (possibly
of mixed signs) such that Tk =

∑
i≥1 λi ϕi ⊗ ϕi in L2(µ) where for every u, v ∈ L2(µ), u ⊗ v is

the rank-one operator L2(µ) → L2(µ) such that (u⊗ v)f := ⟨f, v⟩u for every f ∈ L2(µ).

Generic definition of k+ via operator theory. Define the positive part of Tk =
∑
i λi ϕi ⊗ ϕi by

T+
k :=

∑
i(λi)+ ϕi ⊗ ϕi, where (t)+ = max{t, 0}. Since

∑
i((λi)+)

2 ≤
∑
i λ

2
i <∞, the series

k+(x,x
′) :=

∑
i≥1

(λi)+ ϕi(x)ϕi(x
′) (µ⊗ µ-a.e.). (12)

converges in L2(µ⊗ µ) and defines a kernel µ⊗ µ-almost everywhere. By construction8 Tk+ = T+
k ,

hence k+ is PSD as a kernel a.e., and PSD in the operator sense:
〈
f, Tk+f

〉
≥ 0 for all f ∈ L2(µ).

In particular, if k was already PSD (all λi ≥ 0), then k+ = k (up to null sets). It also inherits
G-invariance of k if k is indeed invariant (the proof mimics the finite-domain case, we give the full
details for completeness in Appendix C.6).

C.3 FROM THE FINITE-SAMPLE PROJECTION TO THE INTRINSIC LIMIT: WHAT CONVERGES TO
WHAT?

We relate the practical, data-dependent Nyström kernel k(D)
+ (Equation (7)) to the intrinsic k+: under

iid sampling, the empirical spectra of k(D)
+ /|D| converge to that of Tk+ , with rates under mild moment

assumptions. This shows that eigendecay-based regret analysis
7We can impose pn(0) = 0 since f(0) = 0. Indeed, take pn(λ) = qn(λ)− qn(0) where qn is a sequence

given by Weierstrass’ theorem, which converges to f(λ) = max(0, λ) on the spectrum of K. We have
|pn(λ)− f(λ)| ≤ |qn(λ)− f(λ)|+ |qn(0)| and because f(0) = 0 we get |qn(0)| = |qn(0)− f(0)| → 0.

8Indeed, by definition (Tk+f)(x) =
∫
S

(∑
i≥1(λi)+ϕi(x)ϕi(x

′)
)
f(x′) dµ(x′) =∑

i≥1(λi)+ ⟨f, ϕi⟩ϕi(x) =
((∑

i≥1(λi)+ ϕi ⊗ ϕi

)
f
)
(x) =

(
T+
k f

)
(x).
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Notations. Let X1, X2, · · · ∼ µ i.i.d. and Dn = {X1, . . . , Xn}. We write Kn := k(Dn,Dn),
K+
n := argminP⪰0 ∥P − Kn∥F , K̃n := Kn/n, and recall that the practical (data-dependent)

kernel defined in Equation (7) is

k
(Dn)
+ (x,x′) = k(x,Dn) (K+

n )
† k(Dn,x′).

We denote by λ(T ) the (ordered, nonincreasing, each counted with its multiplicity) sequence of eigen-
values of a compact self-adjoint operator T , and by δ2

(
λ(T ), λ(S)

)
:=
(∑

i |λi(T )− λi(S)|2
)1/2

the spectral ℓ2 distance. For symmetric matrices M , λ(M) denotes the nonincreasing sequence
of eigenvalues of M (with multiplicity) padded with an infinite number of zeros. For a bounded
operator A, ∥A∥HS and ∥A∥op denote the Hilbert-Schmidt and operator norms, respectively. We
include in Appendix C.4 a reminder on the different notions of norms and convergence, and we now
recall the essentials.

Relations between convergence notions. For compact self-adjoint operators: (i)
max

(
δ2
(
λ(Tn), λ(T )

)
, ∥Tn − T∥op

)
≤ ∥Tn − T∥HS (Reed & Simon, 1972; Bhatia & El-

sner, 1994); (ii) converse inequalities do not hold in infinite dimension (see Appendix C.4 for
examples). Thus, HS convergence is the strongest notion of convergence we manipulate here.

We now present convergence guarantees of the data-dependent construction k(Dn)
+ /n to the intrinsic

k+ under progressively stronger assumptions. With minimal assumptions we obtain almost-sure
spectral consistency in the δ2 metric; with stronger assumptions we obtain quantitative rates in HS
norm (hence also spectral ℓ2 in probability).

(a) Weak a.s. spectral consistency of positive parts (minimal assumptions).
Proposition 9. Assume the symmetric (not necessarily PSD) kernel k is in L2(µ⊗ µ) so that Tk is
Hilbert-Schmidt. Let Ŝn : L2(µn) → L2(µn) be the integral operator with kernel k(Dn)

+ (x,x′)/n
defined by:

(Ŝnf)(x) =
1

n

n∑
j=1

k
(Dn)
+ (x, Xj)f(Xj). (13)

Assume the Xi are pairwise distinct almost surely. Then, almost surely,

δ2

(
λ
(
Ŝn
)
, λ
(
Tk+

))
−→
n→∞

0.

Proof. Let Kn be the empirical operator on Rn with matrix 1
n (k(Xi, Xj))i,j and let λ(Kn) be

its ordered spectrum (nonincreasing, with multiplicity) padded with an infinite number of zeros.
Theorem 3.1 of Koltchinskii & Giné (2000) shows that δ2(λ(Kn), λ(Tk)) → 0 as n→ ∞.

Let K+
n be the positive part of Kn (i.e., its Frobenius PSD projection). Since λ 7→ max(0, λ) is

1-Lipschitz, we have for any operators T, S:

δ2(λ(T+), λ(S+)) =
∑
i

|max(0, λi(T ))−max(0, λi(S))| ≤
∑
i

|λi(T )−λi(S)| = δ2(λ(T ), λ(S)).

We deduce that δ2(λ(K+
n ), λ(Tk+)) → 0 as n→ ∞.

It remains to observe that the spectrum of K+
n as an operator on Rn is the same as Ŝn : L2(µn) →

L2(µn). This identification is standard (e.g., see above Equation 1.2 in Koltchinskii & Giné (2000)).
For completeness, we include the formal arguments of Koltchinskii & Giné (2000) in Lemma 12,
which shows that we can identify the spectrum of k(Dn)

+ (Dn,Dn)/n with the one of K+
n a.s. if the

iid Xi ∼ µ are pairwise distinct a.s, which is true as soon as µ is non-atomic; otherwise one can
index the distinct atoms and work in Rm with m = #supp(µn), obtaining the same spectral identity
on that subspace.

(b) Expected HS convergence with O(n−1/2) rate (stronger assumption). Define the empirical
integral operator (Tnf)(x) := 1

n

∑n
i=1 k(x, Xi)f(Xi) and Dn := Tn − Tk. Let (λi, ϕi)i≥1 be an
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eigensystem of Tk in L2(µ). Assume the following fourth-order summability condition holds:

C :=
∑
i,j≥1

λ2i

∫
S
ϕi(x)

2 ϕj(x)
2 dµ(x) < ∞. (14)

Proposition 10 (Expected HS rate). Under k ∈ L2(µ⊗ µ) and (14),

E
[
∥Dn∥2HS

]
≤ C

n
, E

[
∥Dn∥HS

]
≤
√

C
n .

Consequently, ∥Dn∥HS = OP(n
−1/2) and therefore using the same notations as in Proposition 9

δ2
(
λ(K+

n ), λ(T
+
k )
)
= OP(n

−1/2), δ2

(
λ
(
Ŝn
)
, λ(Tk+)

)
= OP(n

−1/2).

Proof. Fix any f ∈ L2(µ). By Fubini-Tonelli for non-negative functions, we have:

E
[
∥Dnf∥2L2(µ)

]
=

∫
S
E
[(
(Dnf)(x)

)2]
dµ(x).

By definition

(Dnf)(x) =
1

n

n∑
i=1

k(x, Xi)f(Xi)−
∫
S
k(x,x′)f(x′) dµ(x′)

where the randomness comes from the i.i.d. Xi ∼ µ. Hence E
[
(Dnf)(x)

]
= 0 and for any fixed x

E
[(
(Dnf)(x)

)2]
= Var

(
(Dnf)(x)

)
=

1

n
Var
(
k(x, X)f(X)

)
≤ 1

n

∫
S
k(x,x′)2f(x′)2 dµ(x′).

The Hilbert-Schmidt spectral theorem gives the expansion k(x,x′) =
∑
i λiϕi(x)ϕi(x

′) in L2(µ⊗
µ), with (λi)i ∈ ℓ2 and (ϕi)i an orthonormal set of L2(µ) (see Equation 3.2 in Koltchinskii & Giné
(2000), Corollary 5.4 in Conway (2007)). Thus∫

S
E
[(
(Dnf)(x)

)2]
dµ(x) ≤ 1

n

∫
S
k(x,x′)2f(x′)2 dµ(x′)dµ(x)

=
∑
i,j

λiλj

∫
S
ϕi(x

′)ϕj(x
′)f(x′)2 ⟨ϕi, ϕj⟩︸ ︷︷ ︸

=1i=j

dµ(x′)

=
∑
i

λ2i

∫
S
ϕi(x

′)2f(x′)2dµ(x′).

Taking f = ϕj for a fixed j yields

E
[
∥Dnϕj∥2L2(µ)

]
≤ 1

n

∑
i

λ2i

∫
S
ϕi(x

′)2ϕj(x
′)2dµ(x′).

Since ∥Dnf∥2HS =
∑
j ∥Dnϕj∥2L2(µ), we get the main claim:

E
[
∥Dn∥2HS

]
≤ C

n
.

Jensen gives the bound for E∥Dn∥HS. Finally, δ2(λ(Kn), λ(Tk)) ≤ ∥Dn∥HS (Hoffman-Wielandt
inequality in infinite dimension (Bhatia & Elsner, 1994)), and λ 7→ max(0, λ) is 1-Lipschitz on R,
hence the spectral bound probability claim using Markov’s inequality, and Lemma 12 transfers this
claims to Ŝn.
Remark 11 (On assumption (14)). Condition (14) is a fourth-order integrability requirement that
controls eigenfunction overlaps. It is standard in random Nyström analyses (see, e.g., Equations (4.3)
and (4.11) of Koltchinskii & Giné (2000)) and stronger than k ∈ L2, but it yields a dimension-free
O(n−1/2) rate in HS norm.

(c) High-probability HS rates (heavier but more precise). Under slightly stronger L4-type
conditions on eigenfunctions, the section 4 in Koltchinskii & Giné (2000) gives more more precise
statements on the rates in Proposition 10, and we directly refer the reader to it.
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Application to kmax and to the BO kernels in the paper. When k = kmax is bounded on a
compact domain S (as in all our experiments), k ∈ L2(µ⊗ µ) for any probability measure µ on S,
so Tkmax

is Hilbert-Schmidt and Proposition 9 applies. In particular, the integral operator associated
with k(Dn)

+ /n, called Ŝn (Equation (13)) satisfies

δ2

(
λ
(
Ŝn
)
, λ
(
Tk+

)) a.s.−−−−→
n→∞

0.

This clarifies the two objects introduced in the main text: the intrinsic k+ is the unique data-
independent target, while the practical kernel k(Dn)

+ (finite PSD projection + Nyström) is an on-path
approximation whose spectrum converges (once normalized by n) to that of k+ under i.i.d. sampling.

The following subsections are only optional complementary materials added to help building intuitions
on the convergence results stated above.

C.4 REMINDERS ON THE DIFFERENT TYPE OF CONVERGENCES FOR BOUNDED LINEAR
OPERATORS

This subsection recalls standard notions of operator convergence, included only as background to
help build intuition for the convergence results above.

Definitions (operator norm, HS norm, spectral distance). Let H be a separable Hilbert space
with orthonormal basis {ei}i≥1. For a bounded linear operator T : H→H,

∥T∥op := sup
∥f∥H=1

∥Tf∥H, ∥T∥HS :=
(∑
i≥1

∥Tei∥2H
)1/2

.

The HS norm is basis-independent. When T is an integral operator with kernel k ∈ L2(µ⊗ µ) on
L2(µ) (Reed & Simon, 1972)

∥T∥2HS =

∫∫
S×S

|k(x, y)|2 dµ(x) dµ(y).

For finite matrices, ∥A∥HS = ∥A∥F (Frobenius). We say Tn→ T in HS norm if ∥Tn − T∥HS →
0, and we say Tn → T spectrally if δ2

(
λ(Tn), λ(T )

)
→ 0, where we recall that λ(T ) is the

ordered eigenvalues of a compact self-adjoint operator T , and where the spectral ℓ2-distance is
δ2(λ(T ), λ(S)) :=

(∑
i |λi(T )− λi(S)|2

)1/2
.

Which convergences matter, and how they relate (reminders on well-known facts). We compare
three notions: (i) operator norm convergence ∥Tn−T∥op→ 0; (ii) Hilbert-Schmidt (HS) convergence
∥Tn − T∥HS → 0; (iii) spectral convergence in δ2, i.e., δ2

(
λ(Tn), λ(T )

)
:=

(∑
i |λi(Tn) −

λi(T )|2
)1/2 → 0, where λ(·) denotes the ordered eigenvalues of a compact self-adjoint operator. We

recall the following well-known facts, useful to grasp the convergence results we state next.

(1) HS =⇒ spectral δ2. For compact self-adjoint operators the (infinite-dimensional) Hoffman-
Wielandt inequality yields (Bhatia & Elsner, 1994)

δ2
(
λ(Tn), λ(T )

)
≤ ∥Tn − T∥HS.

(2) HS =⇒ operator norm. For every Hilbert-Schmidt operator S, ∥S∥op ≤ ∥S∥HS. Indeed
for unit vectors x, y ∈ H , using x =

∑
i⟨x, ei⟩ei, we have ⟨Sx, y⟩ =

∑
i∈I⟨x, ei⟩ ⟨Sei, y⟩. By

Cauchy-Schwarz:

|⟨Sx, y⟩| ≤
(∑
i∈I

|⟨x, ei⟩|2
)1/2(∑

i∈I
|⟨Sei, y⟩|2

)1/2
.

The first factor equals ∥x∥ = 1, and for the second we use |⟨Sei, y⟩| ≤ ∥Sei∥ ∥y∥ = ∥Sei∥ to get∑
i∈I

|⟨Sei, y⟩|2 ≤
∑
i∈I

∥Sei∥2 = ∥S∥2HS.
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Hence |⟨Sx, y⟩| ≤ ∥S∥HS. Taking the supremum over all unit y gives

∥Sx∥ = sup
∥y∥=1

|⟨Sx, y⟩| ≤ ∥S∥HS,

and then taking the supremum over all unit x yields

∥S∥op = sup
∥x∥=1

∥Sx∥ ≤ ∥S∥HS.

(3) Spectral δ2 does not imply HS nor operator norm. Even if eigenvalues match in ℓ2, the
operators may be far in norm because eigenvectors can rotate. Let T = diag(1, 1/2, 1/3, . . .) in the
canonical basis (ei)i≥1, and let Un swap e1 and en. Set Tn := UnTU

∗
n. Then λ(Tn) = λ(T ) for all

n (same ordered spectrum), so δ2(λ(Tn), λ(T )) = 0. Yet ∥(Tn − T )e1∥ = ∥(UnTU∗
n − T )e1∥ =

∥(1/n− 1)e1∥ = 1− 1/n, hence ∥Tn − T∥op ≥ 1− 1/n→ 1 and, a fortiori, ∥Tn − T∥HS ̸→ 0.

(4) Operator norm does not imply spectral δ2. Let T = 0 and Tn be diagonal with the first mn

entries equal to εn and the rest 0. Choose εn := n−1/2 and mn := n. Then ∥Tn∥op = εn → 0 but

δ2
(
λ(Tn), λ(T )

)
=
(∑mn

i=1 ε
2
n

)1/2
=
√
n · (1/n) = 1.

(5) Two useful corollaries. (a) Spectral δ2-convergence implies convergence of the largest eigenvalue,
since supi |λi(Tn) − λi(T )| ≤ δ2(λ(Tn), λ(T )). (b) Operator-norm convergence forces uniform
eigenvalue deviations to vanish by Weyl’s inequality: supi |λi(Tn)− λi(T )| ≤ ∥Tn − T∥op, but it
does not control the ℓ2-sum of all deviations.

Takeaway. HS is the strongest notion here: it simultaneously implies spectral δ2-convergence (and
thus convergence of eigenvalue-based quantities) and operator-norm convergence. The converses fail
in infinite dimension because eigenvectors can drift and an infinite number of tiny eigenvalue errors
can accumulate.

C.5 IDENTIFICATION OF THE SPECTRUM OF AN EMPIRICAL OPERATOR IN L2(µn) AND ITS
MATRIX COUNTERPART

Here we show how the spectrum of the empirical operator can be identified with that of its matrix
form. This is complementary material meant to clarify how operator-level and matrix-level viewpoints
connect (which is useful, e.g., in the proof of Proposition 9).
Lemma 12 (Empirical Nyström spectral identity). Let Kn := 1

n

(
k(xi,xj)

)n
i,j=1

and let K+
n be

its spectral positive part (the Frobenius-nearest PSD projection). Define the empirical measure
µn := 1

n

∑n
i=1 δxi and the Nyström kernel

k
(Dn)
+ (x,x′) = k(x,Dn) (K+

n )
† k(Dn,x′).

Let Ŝn : L2(µn) → L2(µn) be the integral operator with kernel k(Dn)
+ (x,x′)/n, i.e.

(Ŝnf)(x) =
1

n

n∑
j=1

k
(Dn)
+ (x,xj) f(xj).

The map E : L2(µn) → Rn, Ef := 1√
n

(
f(x1), . . . , f(xn)

)⊤
, is an isometry: ∥Ef∥Rn =

∥f∥L2(µn), and we have the intertwining identity

E Ŝn = K+
n E.

If, in addition, the sample points x1, . . . ,xn are pairwise distinct, thenE is an isometric isomorphism
(hence invertible) and

λ
(
Ŝn
)

= λ
(
K+
n

)
= λ

(
k
(Dn)
+ (Dn,Dn)/n

)
.

Proof. First note the on-sample identity k
(Dn)
+ (xi,xj) = (K+)ij for the unscaled K =

(k(xi,xj))i,j , which follows from K(K+)†K = K+. Hence k(Dn)
+ (Dn,Dn) = K+ and therefore

k
(Dn)
+ (Dn,Dn)/n = K+

n .

20



Published as a conference paper at ICLR 2026

For f ∈ L2(µn) and each i ∈ {1, . . . , n},

√
n
(
EŜnf

)
i
= (Ŝnf)(xi) =

1

n

n∑
j=1

k
(Dn)
+ (xi,xj) f(xj) =

n∑
j=1

(K+
n )ij f(Xj) =

√
n
(
K+
n Ef

)
i
,

which proves E Ŝn = K+
n E. Since E is an isometry by definition of the L2(µn) inner product, if

the Xi are pairwise distinct then E is bijective and conjugates Ŝn with K+
n , so the spectra (with

multiplicities) coincide.

C.6 PROOF OF G-INVARIANCE OF k+ FOR GENERAL DOMAINS

We conclude this appendix with the formal proof that k+ defined in (12) inherits from any group-
invariance of k. This proof is not needed for the main results but is included for completeness. It
makes explicit why k+ preserves any G-invariance of k. The proof follows the one for finite domains
but is heavier in notations because it is now stated using integral operators to generalize the matrix
manipulations of finite domains. For finite domains, denoting by K the Gram matrix of k over
the whole domain and Pg the permutation matrix induced by the action of g ∈ G on the domain,
invariance of k is equivalent to PgK = KP⊤

g = K. Thus any polynomial p(K) of K such that
p(0) = 0 inherits from this invariance since we still have Pgp(K) = p(K)P⊤

g = p(K). And at the
limit, we get invariance of K+. Here, we mimic this proof, and we start by introducing the equivalent
integral operator form of the characterization PgK = KP⊤

g = K for general domains.

Lemma 13 (Kernel invariance ⇐⇒ operator commutation). Let (S, T , µ) be a probability space
and let G act measurably on S. Assume µ is G-invariant. Let Ug : L2(µ) → L2(µ) be the unitary
representation (Ugf)(x) := f(g−1x). Let k ∈ L2(µ ⊗ µ) be a symmetric kernel with integral
operator (Tkf)(x) =

∫
S k(x,x

′)f(x′) dµ(x′). Then the following are equivalent:

(i) k is argumentwise G-invariant: k(gx,x′) = k(x, gx′) = k(x,x′) for µ⊗ µ-a.e. (x,x′) and all
g ∈ G.

(ii) Tk satisfies UgTk = TkUg = Tk on L2(µ) for all g ∈ G.

Proof. (i)⇒(ii). For any f ∈ L2(µ),

(UgTkf)(x) = (Tkf)(g
−1x) =

∫
k(g−1x,x′)f(x′) dµ(x′).

By invariance of k in the first argument UgTk = Tk. Hence T ∗
kU

∗
g = T ∗

k and T ∗
k = Tk (self-adjoint)

and U∗
g = Ug−1 so TkUg−1 = Tk. This is true for all g ∈ G hence UgTk = TkUg = Tk.

(ii)⇒(i). For φ,ψ ∈ L2(µ),∫∫
k(x,x′)φ(x)ψ(x′) dµ(x)dµ(x′) = ⟨φ, Tkψ⟩ = ⟨φ, TkUgψ⟩.

Expanding the last inner product, we get by change of variable and invariance of µ∫∫
k(x,x′)φ(x)ψ(g−1x′) dµ(x)dµ(x′) =

∫∫
k(x, gx′)φ(x)ψ(x′) dµ(x)dµ(x′).

Hence for all φ,ψ,
∫∫

[k(x,x′) − k(x, gx′)]φ(x)ψ(x′) dµ(x)dµ(x′) = 0, which implies
k(x, gx′) = k(x,x′) µ⊗ µ-a.e. Symmetry implies argumentwise G-invariance.

We now show that UgT = T is preserved if we apply a function f such that f(0) = 0 to the spectrum
of T .

Lemma 14 (Borel functional calculus preserves invariance). Let T be a self-adjoint compact operator
on a Hilbert space H with eigendecomposition T =

∑
i λiϕi ⊗ ϕi, and let {Ug}g∈G be a unitary

representation such that UgT = TUg = T for all g ∈ G. For a bounded Borel function f : R → R,
define f(T ) =

∑
i f(λi)ϕi ⊗ ϕi. Then for such f with f(0) = 0, we have

Ugf(T ) = f(T )Ug = f(T ) for all g ∈ G.
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Proof. Proof sketch: The assumption UgT = T forces Ug to act as the identity on each nonzero
eigenspace of T , which directly yields Ugf(T ) = f(T ) for any bounded Borel f with f(0) = 0.

Step 1 (spectral decomposition for compact self-adjoint T without measures). Since T is compact
and self-adjoint, its spectrum is σ(T ) = {0} ∪ {λn : n ∈ I} where I is finite or countable, each
λn ̸= 0 is an eigenvalue of finite multiplicity, and λn → 0 if infinite. Let Eλ denote the eigenspace
for λ ̸= 0, and let E0 = kerT . We have the orthogonal decomposition

H = E0 ⊕
⊕

λ∈σ(T )\{0}

Eλ,

and T acts as scalar multiplication on each Eλ: T |Eλ
= λ IdEλ

, T |E0
= 0. Let Pλ be the

orthogonal projector onto Eλ (for λ ̸= 0) and P0 onto E0. Then for every v ∈ H with expansion
v = v0 +

∑
λ̸=0 vλ (vλ := Pλv), we have

Tv =
∑
λ̸=0

λ vλ.

Step 2 (Ug fixes each nonzero eigenspace pointwise). From UgT = T we get, for any v ∈ Eλ with
λ ̸= 0,

λUgv = Ug(Tv) = Tv = λ v,

hence Ugv = v. Thus Ug acts as the identity on each Eλ (λ ̸= 0). Equivalently, UgPλ = PλUg = Pλ
for all λ ̸= 0. (There is no restriction on Ug inside E0 = kerT .)

Step 3 (defining f(T ) for bounded Borel f with f(0) = 0). Because σ(T ) \ {0} is at most
countable and T is diagonal on {Eλ}, we can define f(T ) by applying f on the spectrum of T as

f(T ) v :=
∑

λ∈σ(T )\{0}

f(λ) vλ, v = v0 +
∑
λ̸=0

vλ, vλ ∈ Eλ.

The series converges in norm since the Eλ are mutually orthogonal and ∥f(T )v∥2 =∑
λ̸=0 |f(λ)|2∥vλ∥2 ≤

(
supλ̸=0 |f(λ)|2

)∑
λ ̸=0 ∥vλ∥2 ≤ ∥f∥2∞∥v∥2. Thus f(T ) is a bounded

operator with ∥f(T )∥ ≤ ∥f∥∞. (When f(0) = 0, there is no contribution on E0.)

Step 4 (invariance and commutation). For v = v0 +
∑
λ̸=0 vλ as above and any g ∈ G, Step 2

gives Ugv = Ugv0 +
∑
λ̸=0 vλ and PλUg = Pλ for λ ̸= 0. Hence

Ugf(T ) v = Ug

(∑
λ ̸=0

f(λ) vλ

)
=
∑
λ̸=0

f(λ)Ugvλ =
∑
λ̸=0

f(λ) vλ = f(T ) v,

i.e., Ugf(T ) = f(T ). In particular Ugf(T ) = f(T )Ug = f(T ) for all g ∈ G.

Consequence. If k is G-invariant, then so is k+ (Equation (12)).

D EIGENDECAY COMPARISON

In this appendix, we discuss in more details the empirical observations made in Section 5 and formally
derive some inequalities between Schatten norms of integral operators associated with kavg and k+.

D.1 EMPIRICAL OBSERVATIONS

Here, we further discuss the empirical spectra reported in Figure 4 (middle and right columns).

Computation of spectra. The normalized Gram matrices K/n (where K = (k(xi,xj))1≤i,j≤n)
reported in Figure 4 are computed from n = 3000 i.i.d. samples xi ∈ S. We compare the spectra
obtained with k ∈ {kb, kavg, k(D)

+ } with D = {x1, . . . ,xn} and each xi being chosen uniformly in
S = [−1, 1]. We also report the spectrum of kb when observations xi are instead sampled from an
alternative domain S ′ of reduced volume, chosen such that vol(S ′) = vol(S)/|G|. Finally, note that
because D is a set of i.i.d. observations, the spectrum of k(D)

+ approximates the one of k+ on S (see
Appendix C.3) so our observations transfer to k+.
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k
(D)
+ on S vs. kb on S ′. For the base kernels kb and groups G considered, the spectrum of k(D)

+ on
S = [−1, 1] exactly matches that of kb on the reduced domain S ′. This indicates that k(D)

+ faithfully
incorporates the extra similarities induced by G-invariance: it retains the eigendecay of kb, but as if it
were defined on the quotient space S/G of effective volume vol(S)/|G|.9

k
(D)
+ on S vs. kavg on S. From Figure 4 (middle and right columns) , it is clear that the spectrum

of kavg decays at least as fast as that of k(D)
+ . They coincide for the RBF kernel and kavg decays even

faster for the Matérn kernel. In principle, this suggests that kavg should admit tighter information-gain
bounds and thus better regret guarantees. However, our empirical results contradict this prediction, as
k
(D)
+ consistently outperforms kavg. This discrepancy highlights the fact that eigendecay alone does

not fully explain BO performance, as pointed out in Sections 5 and 6.

D.2 SCHATTEN NORM INEQUALITIES

While the empirical spectra in Appendix D.1 already highlight a mismatch between eigendecay and
observed BO performance, one may ask whether formal inequalities between the operators induced
by kavg and k+ can be established. We record here for completeness that it is possible to control the
Schatten class of k+ in terms of the one of kavg.

Assume: (S, µ) is a probability space on which a finite group G acts measurably, and the base kernel
kb is bounded, symmetric, PSD, and nonnegative. Define

kavg(x,x
′) :=

1

|G|2
∑
g,g′∈G

kb(gx, g
′x′), kmax(x,x

′) := max
g,g′∈G

kb(gx, g
′x′)

and k+ as the kernel corresponding to the positive part of Tkmax
: Tk+ = (Tkmax

)+.

Schatten norm interpolation. Let H = L2(µ) be the separable Hilbert space of squared integrable
functions on (S, µ), T : H → H a compact operator, and write si(T ) for the singular values of T , i.e.
si(T ) =

√
λi(T ∗T ), arranged in nonincreasing order and counted with multiplicity. The Schatten-p

norm is defined as

∥T∥Sp :=
(∑

i

si(T )
p
)1/p

, 1 ≤ p <∞, ∥T∥S∞ := sup
i
si(T ).

Lemma 15 (Monotonicity for pointwise kernels). If two kernels k, k′ are bounded and satisfy
0 ≤ k ≤ k′ pointwise, then ∥Tk∥Sp

≤ ∥Tk′∥Sp
for p = 2,∞. If k and k′ are also PSD, then

∥Tk∥Sp
≤ ∥Tk′∥Sp

for p = 1 too.

Proof. For p = ∞, the Schatten p-norm is the operator norm ∥T∥op = sup∥f∥H=1 ∥Tf∥H . Point-
wise 0 ≤ k ≤ k′ implies ∥Tkf∥H ≤ ∥Tk′ |f |∥H ≤ ∥Tk′∥S∞∥f∥H , so taking the supremum over
∥f∥H = 1 yields ∥Tk∥S∞ ≤ ∥Tk′∥S∞ . If T = Tk is the integral operator associated with a nonnega-
tive kernel k, then ∥Tk∥S2

= ∥k∥L2(µ⊗µ). Hence pointwise 0 ≤ k ≤ k′ gives ∥Tk∥S2
≤ ∥Tk′∥S2

for p = 2 as well. Finally when k is PSD, we have ∥Tk∥S2
=
∫
x
k(x, x)dµ(x) (and similarly for k′)

and again a pointwise comparison yields the result.

From this we immediately obtain, for our specific kernels that for p = 2,∞, and also p = 1 if kmax

is PSD:

kavg ≤ kmax ≤ |G|2 kavg ⇒ ∥Tkavg∥Sp
≤ ∥Tkmax

∥Sp
≤ |G|2 ∥Tkavg∥Sp

Lemma 16 (Interpolation inequalities for Schatten norms). For any nonnegative sequence a =
(ai)i≥1 one has

∥a∥ℓp ≤ ∥a∥ 2/p
ℓ2 ∥a∥ 1−2/p

ℓ∞ (p ≥ 2),

∥a∥pℓp ≤ ∥a∥ 2−p
ℓ1 ∥a∥ 2(p−1)

ℓ2 (1 ≤ p ≤ 2).

9For a finite group G of isometries, one indeed has vol(S/G) = vol(S)/|G| (Petersen, 2006).
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Proof. For p ≥ 2,
∑
i a
p
i =

∑
i a
p−2
i a2i ≤ ∥a∥p−2

ℓ∞
∑
i a

2
i , giving the stated inequality. For 1 ≤ p ≤

2, write ∑
i

api =
∑
i

a 2−p
i a

2(p−1)
i .

Let r = 1
2−p and s = 1

p−1 (with the usual convention 1/0 = ∞). For 1 < p < 2 we have
1 < r, s <∞ and by Hölder,∑

i

api ≤
(∑

i

(a2−pi )r
)1/r(∑

i

(a
2(p−1)
i )s

)1/s
=
(∑
i

ai
)1/r(∑

i

a2i
)1/s

.

Since 1/r = 2− p and 1/s = p− 1, this gives

∥a∥pℓp ≤ ∥a∥ 2−p
ℓ1 ∥a∥ 2(p−1)

ℓ2 .

The endpoint cases p = 1, 2 follow by continuity (and are trivial directly).

Applied to ai = si(T ), Lemma 16 yields the standard Schatten interpolation inequalities:

∥T∥Sp
≤ ∥T∥ 2/p

S2
∥T∥ 1−2/p

S∞
, (p ≥ 2),

∥T∥Sp
≤
(
∥T∥S1

) 2
p−1 (∥T∥2S2

)1− 1
p , (1 ≤ p ≤ 2).

Since the spectrum of Tk+ is the positive part of the one of Tkmax
, we have ∥Tk+∥Sp

≤ ∥Tkmax
∥Sp

.
We deduce the next lemma.
Lemma 17. For p ≥ 2:

∥Tk+∥Sp
≤ ∥Tkmax

∥Sp
≤ |G|∥Tkavg∥

2/p
S2

∥Tkavg∥
1−2/p
S∞

and if kmax is already PSD then for 1 ≤ p ≤ 2:

∥Tk+∥Sp = ∥Tkmax∥Sp ≤ |G|
(
∥Tkavg∥S1

)2/p−1 (∥Tkavg∥2S2

)1−1/p

and

∥Tkavg∥Sp
≤
(
∥Tkmax

∥S1

)2/p−1 (∥Tkmax
∥2S2

)1−1/p
.

E BENCHMARKS

In this appendix, we present additional results and describe the experimental setup of Section 4 in
detail.

E.1 EXPERIMENTAL FIGURES

We provide the whole set of figures generated from our experiments on synthetic benchmarks
(Figure 5) and on real-world problems (Figure 6).

E.2 EXPERIMENTAL DETAILS

In our experiments, every BO algorithm is implemented with the same BO library, namely
BOTorch (Balandat et al., 2020). All of them are initialized with five observations sampled uniformly
in S . After that, at each iteration t, every BO algorithm must:

• Fit its kernel hyperparameters. This is done by gradient ascent of the Gaussian likelihood, as
recommended by BOTorch. The hyperparameters are the signal variance λ, the lengthscale l and
the observational noise level σ2

0 .
• Optimize GP-UCB to find xt. This is done by multi-start gradient ascent, using the
optimize acqf function from BOTorch. As values of βt recommended by Srinivas et al.
(2012) turn out to be too exploratory in practice, we set βt = 0.5d log(t).

• Observe y(xt) = f(xt) + ϵt. Function values are corrupted by noise whose variance is 2% of the
signal variance.
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Figure 5: Cumulative regret under GP-UCB with kb (blue crosses), kavg (orange diamonds), and
k
(D)
+ (green circles) on synthetic benchmarks. Shaded areas: standard error over 10 seeds.
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Figure 6: Negated simple reward under GP-UCB with kb (blue crosses), kavg (orange diamonds),
and k(D)

+ (green circles) on real-world experiments. Shaded areas: standard error over 10 seeds.

We optimize over 50 iterations and typically measure the cumulated regret along the optimizer’s
trajectory.

All experiments are replicated across ten independent seeds and are run on a laptop equipped with
an Intel Core i9-9980HK @ 2.40 GHz with 8 cores (16 threads). No graphics card was used to
speed up GP inference. The typical time for each maximization problem ranged from ∼1 minute
(two-dimensional Ackley, |G| = 8) to ∼15 minutes (five-dimensional Rastrigin, |G| = 3840). The
particle packing problem was by far the most time-consuming experiment due to the expensive
physics simulator used for computing the objective value of each new query (∼4 hours for 30 BO
iterations, which we repeated on 10 seeds for each kernel).

E.3 BENCHMARKS

We maximize the following functions.

Ackley. The d-dimensional Ackley function fAckley on S = [−16, 16]d with global maximum
fAckley(0) = 0, with −fAckley defined by:

−fAckley(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), (15)

where we set a = 20, b = 0.2 and c = 2π as recommended.
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The d-dimensional Ackley is invariant to the hyperoctahedral group in d dimensions, which includes
permutations composed with coordinate-wise sign-flips. Consequently, in d dimensions, |G| =
2d︸︷︷︸

sign-flips

d!︸︷︷︸
permutations

.

Griewank. The d-dimensional Griewank function fGriewank on S = [−600, 600]d with global
maximum fGriewank(0) = 0, with −fGriewank defined by:

−fGriewank(x) =

d∑
i=1

x2i
4000

−
d∏
i=1

cos

(
xi√
i

)
+ 1.

The d-dimensional Griewank is invariant to coordinate-wise sign-flips of all d coordinates. Therefore,
in d dimensions, |G| = 2d.

Rastrigin. The d-dimensional Rastrigin fRastrigin on S = [−5.12, 5.12]d with global maximum
fRastrigin(0) = 0, with −fRastrigin defined by:

−fRastrigin(x) = 10d+

d∑
i=1

(
x2i − 10 cos (2πxi)

)
.

The d-dimensional Rastrigin is invariant to the hyperoctahedral group in d dimensions, which
includes permutations composed with coordinate-wise sign-flips. Consequently, in d dimensions,
|G| = 2d︸︷︷︸

sign-flips

d!︸︷︷︸
permutations

.

Radial. Our radial benchmark is defined on S = [−10, 10]2 with global maxima fRadial(x
∗) = 0,

where x∗ is any x ∈ S such that ||x||2 = ab. It has the following expression:

fRadial(x) = fRastrigin

(
||x||2
a

− b

)
(16)

where we set a = 10
√
2, b = 0.8 and where fRastrigin is the one-dimensional Rastrigin benchmark.

Our radial benchmark is invariant to planar rotations. Consequently, G comprises an uncountably
infinite number of symmetries.

Scaling. Our scaling benchmark is defined on S = [0.1, 10]2 with global maxima fScaling(x
∗) = 0,

where x∗ is any x = (x1, x2) ∈ S such that x1 = x2. The function −fScaling has the following
expression:

−fScaling(x) =

(
x1
x2

− 1

)2

.

Our scaling benchmark is invariant to rescaling of both coordinates. Consequently, G comprises an
uncountably infinite number of symmetries.

WLAN. The goal of the WLAN benchmark is to place m access points (APs) inside a square
region A = [−50, 50]2 so as to maximize the total communication quality over p users located in A,
a recurring problem in wireless network design (Younis & Akkaya, 2008; Taleb et al., 2022). Given
a set of AP positions, each user connects to its closest AP, and the resulting network throughput—
computed from the Signal to Interference plus Noise Ratio (SINR) and Shannon capacities—defines
the value of the objective function.

The user positions {(uj , vj)}j∈[p] ⊂ A and all physical parameters (W , L, λ, N ) are given. The
region A itself is fixed.

The variables of the problem are the AP locations

(x,y) = ((x1, . . . , xm), (y1, . . . , ym)) ∈ S = Am,
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Figure 7: WN with the best positions of APs found by GP-UCB with k(D)
+ . APs are depicted by red

triangles and users with blue circles. The throughput for each user is shown in Mbps.

so the search space is 2m-dimensional. Every quantity below—AP–user associations, distances,
received powers, SINRs, and capacities—depends on (x,y).

For a candidate placement {(xi, yi)}, each user attaches to its nearest AP. Thus AP i serves the users
in

U(xi, yi) = { j ∈ [p] : dij ≤ dkj for all k ̸= i },
(ties are resolved arbitrarily) where the distance to user j is

dij =
√
(xi − uj)2 + (yi − vj)2.

For any associated pair (i, j), the power received by user j from AP i is

Pij = 10−L/10 min(d−λij , 1),

and the SINR is

γij =
Pij

N +
∑
k ̸=i Pkj

.

The corresponding Shannon capacity is

Cij =W log2(1 + γij).

Maximizing the WLAN performance amounts to maximizing the total throughput (the cumulated
sum of Shannon capacities for every AP-user association):

fWLAN(x,y) =

m∑
i=1

∑
j∈U(xi,yi)

Cij

viewed as a function of the AP locations (x,y).

In our experiment, we set W = 1 MHz, L = 46.67 dBm, λ = 3, N = −85 dBm, m = 4 APs and
p = 16 users.

Our objective fWLAN is invariant to any permutation of the APs: permuting both x and y with the
same permutation leaves the objective value unchanged. Therefore, |G| = m!.

Figure 7 shows the best AP-placement found by GP-UCB using k(D)
+ on one training run.

Particle packing problem. The particle packing fraction (PPF) problem models how a mixture of
spherical particles settles under gravity inside a fixed rectangular box. This setting originates from
granular-material physics and is routinely used in materials science and civil engineering (e.g., in
the design of concrete mixes (Li et al., 2023; Basheerudeen & Anandan, 2014) by tuning the size
distribution and proportions of aggregates to maximize packing density; for instance to need less
cement and water, and get better mechanical properties).

People literally design concrete mixes by tuning the size distribution and proportions of aggregates to
maximize packing density (so you need less cement and water, and get better mechanical properties).
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In this problem, a mixture of particles is first instantiated inside the box according to prescribed
mixture parameters, and the particles are then allowed to fall under gravity. Collisions, frictions and
rearrangements determine the final configuration, and the packing fraction is defined as the ratio
between the total particle volume and the volume of the smallest axis-aligned box that contains all
particles after settling.

We fix the number of particle types to n. Each type i is described by:

• a diameter di in a prescribed interval [dmin, dmax],
• a share si in [smin, smax], representing the relative proportion of particles of that type in the mixture.

Thus the optimization variable is

x = (d1, . . . , dn, s1, . . . , sn).

The box size and the total initial particle volume Vp (which then remains constant during the
simulation) are fixed in all experiments.

Given a mixture specification x = (d1, . . . , dn, s1, . . . , sn), the initial particle configuration is
generated by repeatedly sampling particles until a fixed total particle volume Vp is reached. Particles
are sampled independently as follows: (i) sample a type i ∈ {1, . . . , n} with probability proportional
to its share si, (ii) sample a location uniformly at random in the container and put a particle of
diameter di there. If any overlap of particles occurs during initialization, positions are adjusted locally
so that the configuration becomes valid. From this randomized initial state, the system evolves under
gravity, in practice we use a physics-based simulator (LAMMPS (Thompson et al., 2022)) for that.
The simulation proceeds until the particles reach a mechanically stable configuration, as illustrated in
Figure 8. If Vo(x) denotes the volume of the smallest axis-aligned box enclosing all particles at the
end of the dynamics (i.e., the container volume after settling), the particle packing fraction is

PPF(x) =
Vp

Vo(x)
,

and we aim at maximizing this as a function of the mixture parameters x. To our knowledge, there is
no accurate closed-form expression for this dynamical packing fraction in our setup, so evaluating
PPF(x) requires running the full physical simulation. Indeed: PFF(x) is actually a random variable:
given any mixture parameters x, Vo(x) depends on the random initialization of the particles in the
container, so there is observational noise induced by this random initialization. Moreover, even if the
random seed was fixed, because Vo(x) depends on complex interactions during the fall—collisions,
friction, and rearrangements, there is still no closed form available: evaluating PPF(x) always
requires running this full physical simulation. This makes the objective function costly and genuinely
black-box, a typical regime where BO is well motivated.

Figure 8: Particles settling under gravity in a fixed-size box. A single evaluation of PPF(x) requires
simulating the fall from a randomized initial configuration (left) to a mechanically stable state (right),
making the objective expensive and simulation-based.

Two symmetries are inherent to this formulation:

1. Share scaling: multiplying all si by the same positive factor leaves the resulting mixture unchanged
(the mixture only involves normalized shares).

2. Permutation symmetry: permuting the (di, si) pairs does not change the mixture either.

In practice, we take n = 3, which is the smallest setting where the problem starts to be interesting (no
easy solution) while keeping simulation costs manageable. We constrain the diameters and shares to

di ∈ [0.35, 0.80], si ∈ [0.1, 1.0],
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chosen so that (i) all particles remain sufficiently small relative to the fixed box size, and (ii) each
type is represented in non-negligible quantity.

Baird et al. (2023a) previously applied BO to this problem (for solid rocket fuel design) and handled
these symmetries by restricting the search to a fundamental domain and applying standard kernels
there. In contrast, we keep the domain unchanged and instead use kernels that are invariant under
the symmetries of the problem. A conceptual comparison between these two symmetry-handling
strategies is provided in Appendix G.

F COMPARISON OF SYMMETRY-INVARIANT KERNELS WITH THE
DATA-AUGMENTATION APPROACH

Given the widespread use of data augmentation (DA), we compare symmetry-invariant kernels
with the simple baseline corresponding to using the base kernel combined with DA. We find that
symmetry-invariant kernels perform better overall.

DA consists of replacing each input x in the dataset by (gx)g∈G′
x

with G′
x ⊂ G, and BO is run on this

augmented dataset. We consider two scenarios: (i) using all augmentations for small groups (G′
x = G

for all x) so that (gx)g∈G′ is simply the orbit of x, and (ii) using a random subset G′
x ⊂ G for larger

groups (chosen independently for every x, drawn uniformly without replacement).

On the two-dimensional Ackley function (left panel of Figure 9), kb is applied to a dataset augmented
with all symmetries (|G| = 8). In this case, kb with DA achieves slightly better (lower) cumulative
regret than kb alone. Its performance, however, remains worse that of the average kernel kavg and the
PSD projection of the max kernel k(D)

+ . A similar pattern appears on the three-dimensional Ackley
function (right panel of Figure 9), where DA uses 20 augmentations sampled without replacement
from G (|G| = 48).

We also report the runtime of each method. These results show that kb+DA scales less favorably than
kavg and k(D)

+ , even when using only a moderate random subset of augmentations. Overall, these
experiments suggest that using symmetry-invariant kernels directly is more practical for Bayesian
optimization than relying on data augmentation.
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Figure 9: Cumulative regret on the two-dimensional (resp., three-dimensional) Ackley function, with
|G| = 8 (resp., |G| = 48).

Table 3: Average wall-clock time in seconds per iteration for each method on the two-dimensional
(resp., three-dimensional) Ackley function.

Benchmark |G| kb kb with DA kavg k
(D)
+

Ackley2d 8 0.416 ± 0.253 0.599 ± 0.279 0.451 ± 0.273 0.924 ± 0.444
Ackley3d 48 0.506 ± 0.336 2.665 ± 2.950 0.590 ± 0.384 1.307 ± 0.724

29



Published as a conference paper at ICLR 2026

G WORKING WITH FUNDAMENTAL DOMAINS AND QUOTIENTS

This appendix expands on the brief discussion in Section 2.2 about search-space restriction and
explains why our approach targets kernel design rather than the choice of domain. The goal is to
clarify that both ingredients, a good domain and a good kernel, are needed and complementary.

G.1 FUNDAMENTAL DOMAINS AS QUOTIENT REPRESENTATIONS

Given a domain S and a group action G, restricting the search to a fundamental domain amounts
to choosing a concrete embedded representation of the quotient space S/G in S. While this is
conceptually elegant, the practical implementation depends heavily on the pair (S,G) and must be
re-derived for each new problem.

G.2 EXAMPLE: PERMUTATIONS OF Rd

In several of our experiments, S = [a, b]d and G = Sd acts by permuting coordinates. Two vectors
are equivalent if one is a permutation of the other. A natural choice of fundamental domain is the
sorted cone

C = {x ∈ [a, b]d : x1 ≤ x2 ≤ · · · ≤ xd},
which is one possible representation of the quotient S/G (other equivalent views include multisets or
d-atomic probability measures, but these views does not lead to subsets of the original domain S so
they do not qualify as ”fundamental domains”).

Even in this simple case, two practical issues appear.

(1) One must characterize and project onto the quotient, and check that it is “smooth enough”. Most
BO implementations assume that the search domain is a box [a, b]d for which enforcing feasibility of
the iterates is straightforward (via coordinatewise clipping x 7→ max(a,min(b, x))). If we optimize
an acquisition function over the fundamental domain C instead, any gradient-based or heuristic
optimizer will typically propose points x that lie outside C, and these must be projected back. This
requires (i) describing the quotient S/G via an explicit embedded representation (here, C ⊂ S) and
(ii) figuring out how to implement the projection. For C, projecting x onto it amounts to solving

projC(x) ∈ arg min
y1≤···≤yd

∥y − x∥2,

which can be solved efficiently using known algorithms (e.g. the pool adjacent violators algorithm).
Our point is not that this particular projection is hard, but that for each new pair (S,G) the user must
again derive an explicit model of the quotient and a practical projection operator, which can be a
burden depending on their goals and familiarity with quotients and the problem at hand.

Smoothness assumptions also need to be checked. The cone C is not a smooth manifold, implying that
the projection is not smooth everywhere and gradients are not smooth (or even properly defined) at
certain points. Here, the singularities form a zero-measure set: they occur at points with some equal
coordinates (this is because the action of G is not free; in contrast, if the action were free, proper,
and smooth, Theorem 21.10 in Lee (2013) would guarantee that the quotient is a smooth manifold).
For many constrained sets, singularities similarly form a negligible set and may be harmless for
optimization (initialization and gradient descent are likely to avoid them), but this depends on the
specific quotient and must be verified on a case-by-case basis.

Overall, working in the quotient means that the user must (i) characterize and project onto a potentially
non-smooth quotient, and (ii) check that its singularities do not cause difficulties for the optimization
method they use. Doing this for each new (S,G) may be burdensome. This is why, in this paper, we
choose to avoid optimizing in a fundamental domain and instead provide kernels that can be used in a
plug-and-play manner directly on S . These same kernels could also be used on the quotient space (by
interpreting them as kernels on equivalence classes), so our approach is complementary to, rather
than in competition with, the choice of the search domain.

(2) One must still choose a kernel on equivalence classes. Working on S/G does not remove the
modelling choice: one still needs to pick a kernel k([x], [y]), and there is no canonical option even in
the permutation example. The quotient can be described in several equivalent ways (sorted vectors in
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C, multisets, or atomic measures), and each viewpoint naturally suggests different classes of kernels
or distances. This is precisely the type of question our paper addresses: how to construct a good
kernel that is invariant to the symmetries? We study a natural construction: start with a “good” kernel
on S (e.g. one that makes sense locally on S to measure similarity before accounting for symmetries),
and then make it invariant by aggregating via mean or max. The resulting kernels are G-invariant and
thus well-defined on the quotient, and our results show that the max-based construction shows good
properties, both empirically and geometrically.

H USE OF LLMS

We made limited use of large language models (GPT-5) during the preparation of this manuscript.
Their role was strictly restricted to grammar correction, improving clarity and conciseness, emphasiz-
ing text (e.g., bolding), and formatting tables. They were not used for generating technical content,
suggesting new concepts, or contributing to proofs or results. All ideas, proofs, experiments, and
findings are entirely our own. Every rephrased passage was carefully reviewed and validated by the
authors to ensure correctness and faithfulness to our original intent. No unverified or plagiarized
content was introduced.
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