

(日) (日) (日) (日) (日) (日) (日) (日)

Online Learning for the Black-Box Optimization of Wireless Networks Public PhD Defense

September 7th, 2023

Presented by Anthony Bardou

Jury Members

President: Liva Ralaivola (AMU & Critéo)

Examiners: Patrick Loiseau (Inria & École Polytechnique) Supervisor: Thomas Begin (UCBL) Giovanni Neglia (Inria) Claire Vernade (UTübingen)

Wireless Network

Performance metrics (e.g. users throughput) easy to describe

2/36

Wireless Network

Performance metrics (e.g. users throughput) hard to describe

2/36

Wireless Network

Performance metrics (e.g. users throughput) very hard to describe

三日 のへで

Optimization of a Wireless Network

- \blacksquare The network has parameters and $f:\mathcal{C}\rightarrow\mathbb{R}$ an objective function
- **Goal**: tune the parameters to maximize the objective *f*

Online, Black-Box Optimization of a Wireless Network?

- Black-Box: the closed form of f is unknown (or does not exist)
 - Only noisy-corrupted *f*-values are observable by query
- Online: the learning data is collected during the optimization process

The Notion of Regret

•
$$\boldsymbol{x}^* = \operatorname{arg\,max}_{\boldsymbol{x} \in \mathcal{C}} f(\boldsymbol{x})$$

Instantaneous regret at time t:

$$r_t = f(\boldsymbol{x}^*) - f(\boldsymbol{x}_t) \tag{1}$$

Cumulative regret at time *t*:

$$R_t = \sum_{k=1}^t r_k \tag{2}$$

Asymptotic optimality

$$\lim_{t \to +\infty} \frac{R_t}{t} = 0 \tag{3}$$

Given enough time, x^* will be the most queried configuration (by far!)

ELE NOR

Example: Spatial Reuse Optimization in WLANs

- Maximize an objective function in a WLAN (e.g. Wi-Fi network)
 - Each P is an access point (AP)
 - APs serve stations (STAs)
- Each AP i has two parameters denoted $oldsymbol{x}^{(i)} \in \mathcal{C}^{(i)}$
 - Transmission power (TX_PWR), sensibility threshold (OBSS_PD)
 - Dynamical update with IEEE 802.11ax amendment [1] (Wi-Fi 6)
- Spatial reuse optimization
 - is hard
 - must be addressed in next-generation WLANs

^{[1] &}quot;IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks–Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications". In: *IEEE Std* 802.11-2020 (*Revision of IEEE Std* 802.11-2016) (2021).

Outline

Introduction

- **Contribution 1**: Multi-Armed Bandit Approaches for 802.11
- **Contribution 2**: Decentralized Bayesian Optimization for 802.11
- **Contribution 3**: Assessing the Benefits of NOMA for Next-Generation Cellular Networks
 - Collaboration with Jean-Marie Gorce, INSA Lyon
- Contribution 4: Decentralized, No-Regret Bayesian Optimization of High-Dimensional Functions
 - Collaboration with Patrick Thiran, EPFL

Conclusion

Contribution 1

Multi-Armed Bandit Approaches for 802.11

Context

- WLAN with n APs, m STAs
- Each AP has two discrete parameters, with 20 values each
 - $|\mathcal{C}| = 20^{2n}$ configurations
 - \blacksquare Can be reduced to $|\mathcal{C}|=200^n$ by integrating an IEEE 802.11ax constraint
- Assumption. The WLAN is equipped with a controller able to gather the throughputs of the STAs
- Assumption. The APs and the STAs do not move in space
 - Mild assumption for stadiums, open-spaces and M2M networks
- $f:\mathcal{C}\to\mathbb{R}$ is an ad-hoc objective function maximized when there is no starvation in the WLAN
 - A STA is said in starvation when its throughput is lower than a given threshold
- The problem is framed as a Multi-Armed Bandit (MAB)
 - Each configuration ${m x}$ is an arm, returning a reward $f({m x}) + \epsilon$ when pulled

Overview

- \blacksquare ${\mathcal C}$ is too large to explore all the arms in a reasonable amount of time
- To overcome this, we propose two algorithms:
 - The sampler must explore the configurations space and gather configurations that appear promising configurations in a reservoir
 - The optimizer must identify the best configuration in the reservoir (Thompson sampling [2])

^[2] William R Thompson. "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples". In: Biometrika 25.3-4 (1933), pp. 285–294.

Building the Reservoir

- **State-of-the-art**: Uniform sampling in C
- Assumption (regularity).

 $\exists L > 0, \forall \boldsymbol{x}_i, \boldsymbol{x}_j \in \mathcal{C}, ||\boldsymbol{x}_i - \boldsymbol{x}_j||_1 = 1 \implies |f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j)| < L \quad (4)$

Two proposed samplers

Evaluation

- Evaluation through simulation with ns-3 [3], 22 replications
- Evaluation on a real-world based scenario (selection)

Variable MCS, uplink/downlink traffic

[3] The ns3 Project. The Network Simulator ns-3. https://www.nsnam.org/. Accessed: 2021-09-30. 2020. < 🗇 + < 🗄 + < 🚊 + < 🚊 + 🗧 = 🔗 🔍 🖓

Evaluation

- Control strategies: DEFAULT
- SOTA strategies: WCNC'15 [4], JNCA'19 [5], GM+NGTS, HM+NGTS
- **75** ms per test, 120 seconds simulated \implies 1,600 iterations

^[4] M Shahwaiz Afaqui et al. "Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax". In: 2015 IEEE wireless communications and networking conference (WCNC). IEEE. 2015, pp. 1060–1065.

^[5] Francesc Wilhelmi et al. "Collaborative spatial reuse in wireless networks via selfish multi-armed bandits". In: Ad Hoc Networks 88 (2019), pp. 129–141.

Discussion

Pros

- Two solutions competitive against state-of-the-art strategies
- Robust evaluation (complex scenarios, credible number of APs)

Cons

- No theoretical guarantees
- Many hyperparameters to set
- Centralized solution

Contribution 2

Decentralized Bayesian Optimization for 802.11

Context

- \blacksquare WLAN with n APs, m STAs
- Each AP i has two continuous parameters, within $C^{(i)} = [-82, -62] \times [1, 21]$

$$\mathcal{C} = \mathcal{C}^{(1)} \times \cdots \times \mathcal{C}^{(n)}$$

$$d = \dim \mathcal{C} = 2n$$

• Assumption. The APs and the STAs do not move in space

• $f: \mathcal{C} \to \mathbb{R}^+$ is built on the proportional fairness of the STAs' throughputs $T(\boldsymbol{x}) = (T_1(\boldsymbol{x}), \cdots, T_m(\boldsymbol{x}))$ $f(\boldsymbol{x}) = \sum_{i=1}^m \log T_i(\boldsymbol{x})$ (5)

• $\arg \max_{\boldsymbol{x} \in \mathcal{C}} f(\boldsymbol{x})$ is a natural trade-off between

- \blacksquare a large cumulated throughput $||T(\boldsymbol{x})||_1$
- a large fairness index $\frac{||T(\boldsymbol{x})||_1^2}{m||T(\boldsymbol{x})||_2^2}$ [6]

^[6] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. "A quantitative measure of fairness and discrimination". In: Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA 21 (1984). イロト イラト イラト イラト イラト スティン

Decentralized Method

Assumption. Each AP can only communicate with APs in its radio range

- \mathcal{N}_i : indices of reachable APs for AP *i*, including *i* itself
- **\square** S_i : the STAs associated with AP i

Additive decomposition of f such as $f(\pmb{x}) = \sum_{i=1}^n f^{(i)}(\pmb{x})$

• $f^{(i)}(\boldsymbol{x}) = \sum_{j \in S_i} \log T_j(\boldsymbol{x})$? • $f^{(i)}(\boldsymbol{x}) = \sum_{j \in N_i} \frac{1}{|\mathcal{N}_j|} \sum_{k \in S_j} \log T_k(\boldsymbol{x})$ exploits the whole local information

(日) (周) (目) (日) (日) (0)

Bayesian Optimization

Assumption. $\forall i \in [1, n], f^{(i)}$ is a Gaussian Process $\mathcal{GP}\left(0, k^{(i)}\left(\boldsymbol{x}_{\mathcal{N}_{i}}, \boldsymbol{x}_{\mathcal{N}_{i}}'\right)\right)$

$$\begin{array}{l} \bullet \ \boldsymbol{x}_{\mathcal{N}_{i}} \in \mathcal{C}_{\mathcal{N}_{i}} = \prod_{j \in \mathcal{N}_{i}} \mathcal{C}^{(j)} \\ \bullet \ \forall \boldsymbol{x} \in \mathcal{C}_{\mathcal{N}_{i}}, f^{(i)}(\boldsymbol{x}) \sim \mathcal{N}\left(0, \left(\sigma_{0}^{(i)}(\boldsymbol{x})\right)^{2}\right) \end{array}$$

Pioneering work [7] conditions the model on \mathcal{D}_t

$$\forall \boldsymbol{x} \in \mathcal{C}_{\mathcal{N}_i}, f^{(i)}(\boldsymbol{x}) | \mathcal{D}_t \sim \mathcal{N}\left(\mu_t(\boldsymbol{x}), \left(\sigma_t^{(i)}(\boldsymbol{x})\right)^2\right)$$

• Acquisition function $\varphi_t^{(i)} : \mathcal{C}_{\mathcal{N}_i} \to \mathbb{R}$

Expected Improvement [8]

$$\begin{array}{l} \boldsymbol{\varphi}_t^{(i)}(\boldsymbol{x}) = \mathbb{E}_{f^{(i)}(\boldsymbol{x}) \sim \mathcal{N}\left(\boldsymbol{\mu}_t^{(i)}(\boldsymbol{x}), \left(\boldsymbol{\sigma}_t^{(i)}(\boldsymbol{x})\right)^2\right)} \left[\left(f^{(i)}(\boldsymbol{x}) - y_t^*\right)^+ \right] \\ \end{array} \\ \text{We set } \boldsymbol{x}^{(i)} = \arg \max_{\boldsymbol{x} \in \mathcal{C}_{\mathcal{N}_i}} \boldsymbol{\varphi}_t^{(i)}(\boldsymbol{x}) \end{array}$$

A. Bardou

^[7] Christopher K. I. Williams and Carl Edward Rasmussen. "Gaussian Processes for Regression". In: Conference on Neural Information Processing Systems (NeurIPS'95). 1995.

^[8] Jonas Mockus. "Application of Bayesian approach to numerical methods of global and stochastic optimization". In: Journal of Global Optimization 4 (1994), pp. 347–365.

Consensus Function

Assumption. $\forall i \in [1, n]$, $f^{(i)}$ is L_i -Lipschitz continuous

Theorem.

- Let $\mathcal{P}_k = \left\{ x_k^{(i)} \right\}_{i \in \mathcal{N}_j}$ be the prescriptions received by AP $j = \left\lceil \frac{k}{2} \right\rceil$ for its parameter $k \in [1, 2n]$
- Let \tilde{x}_k be the median of \mathcal{P}_k , weighted by the Lipschitz constants $\{L_i\}_{i\in\mathcal{N}_i}$
- Then, the vector $\tilde{\boldsymbol{x}} = (\tilde{x}_1, \cdots, \tilde{x}_{2n})$ is minimax optimal

イロト 不同 トイヨト イヨト ショー ショク

Evaluation

- Evaluation through simulation with ns-3, 22 replications
- Two topologies with variable MCS and uplink/downlink traffic
- T1: Open spaces, Cisco San Francisco 10 APs, 50 STAs

T2: Residential Building 14 APs, 56 STAs

Evaluation

Control strategy: DEFAULT

.

- SOTA strategies: WCNC'15 [9], JNCA'19 [10], GM+NGTS, HM+NGTS, INSPIRE, INSPIRE_LIM
- **75** ms per test, 30 seconds of simulated time \implies 400 iterations

	Average Regret R_t/t			
Solution	T 1	Т2		
DEFAULT	0.652 ± 0.001	0.429 ± 0.004		
WCNC'15	0.470 ± 0.001	0.327 ± 0.005		
JNCA'19	0.437 ± 0.001	0.398 ± 0.006		
GM+NGTS	0.527 ± 0.016	0.375 ± 0.006		
HM+NGTS	0.305 ± 0.006	0.379 ± 0.005		
INSPIRE	0.193 ± 0.005	$\textbf{0.294} \pm \textbf{0.006}$		
INSPIRE_LIM	0.233 ± 0.005	0.329 ± 0.005		

[9] Afaqui et al., see n. 4.

[10] Wilhelmi et al., see n. 5.

A. Bardou

Network Oriented Metrics

A. Bardou

Discussion

Pros

- Excellent empirical performance
- Robust evaluation (complex scenarios, credible number of APs)
- Decentralized
- Theoretical guarantees (minimax optimal at each iteration)

Cons

- Asymptotic optimality?
- Impact of rounding?
- High-dimensional factors in denser topologies?

Contribution 4

Decentralized, No-Regret Bayesian Optimization of High-Dimensional Functions

BO in High-Dim. Input Spaces

Recall that BO as defined by [11] involves

- Assumption. $f : \mathcal{C} \subset \mathbb{R}^d \to \mathbb{R}$ is $\mathcal{GP}(\mu, k)$
- An acquisition function $\varphi_t:\mathcal{C}\to\mathbb{R}$ to discover promising queries
- $\mathbf{z}_{t+1} = \operatorname{arg\,max}_{\boldsymbol{x} \in \mathcal{C}} \varphi_t(\boldsymbol{x})$
- Classical BO struggles with high-dimensional input spaces because of the global optimization algorithms used to compute $x_{t+1} = \arg \max_{x \in C} \varphi_t(x)$
- Solution:

Assumption. An additive decomposition for *f*, that is

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} f^{(i)}(\boldsymbol{x}_{\mathcal{V}_i})$$
(6)

• with
$$f^{(i)}: \mathcal{C}^{(i)} \subseteq \mathbb{R}^{d^{(i)}} \to \mathbb{R}$$
 being $\mathcal{GP}\left(\mu^{(i)}, k^{(i)}\right)$, $\forall i \in [1, n]$

Maximum Factor Size (MFS): $\overline{d} = \max_{i \in [1,n]} d^{(i)}$

[11] Williams and Rasmussen, see n. 7.

A. Bardou

Decomposing BO Algorithms

Solution	MFS Assumption	Find $\arg \max \varphi_t$
ADD-GPUCB [12]	$\bar{d} = 1$	Yes
QFF [13]	$\bar{d} = 1$	Yes
DEC-HBO [14]	$\bar{d} \leq 3$	Under assumptions
DuMBO (Ours)	None	Under assumptions

 We propose a Decentralized Message-passing Bayesian Optimization algorithm (DuMBO)

- We demonstrate its asymptotic optimality
- We demonstrate its competitiveness on synthetic and real-world problems

^[12] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. "High dimensional Bayesian optimisation and bandits via additive models". In: International conference on machine learning. PMLR. 2015, pp. 295–304.

^[13] Mojmir Mutny and Andreas Krause. "Efficient high dimensional bayesian optimization with additivity and quadrature fourier features". In: Advances in Neural Information Processing Systems 31 (2018).

^[14] Trong Nghia Hoang et al. "Decentralized high-dimensional Bayesian optimization with factor graphs". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

Decentralized GP-UCB

• The GP-UCB acquisition function is $\varphi_t(x) = \mu_t(x) + \beta_t^{\frac{1}{2}} \sigma_t(x)$ [15]

• $\sigma_t(x) = \sqrt{\sum_{i=1}^n \left(\sigma_t^{(i)}(x_{\mathcal{V}_i})\right)^2}$ cannot be computed in a decentralized fashion

Previous works [16] propose to apply GP-UCB to each factor f⁽ⁱ⁾ individually
 The optimized acquisition function is therefore

$$\varphi_t(\boldsymbol{x}) = \sum_{i=1}^n \varphi_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i})$$

$$= \sum_{i=1}^n \mu_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i}) + \beta_t^{\frac{1}{2}} \sigma_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i})$$

$$= \mu_t(\boldsymbol{x}) + \beta_t^{\frac{1}{2}} \sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i})$$
(7)

In (7), $\sigma_t(x)$ is replaced by the overestimation $\sum_{i=1}^n \sigma_t^{(i)}(x_{\mathcal{V}_i})$

The decentralized algorithms explore too much!

[16] Kandasamy, Schneider, and Póczos, see n. 12; Hoang et al., see n. 14.

A. Bardou

^[15] Niranjan Srinivas et al. "Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting". In: IEEE Transactions on Information Theory 58.5 (2012), pp. 3250–3265. DOI: doi:10.1109/tit.2011.2182033.

Reducing the Gap

• The variance term $(\sigma_t^{(i)})^2$ can be decomposed [17] into

- An epistemic term: uncertainty due to the lack of observed data
- An aleatoric term $v_{-}^{(i)}$: observational noise, natural lower bound of $(\sigma_t^{(i)})^2$

Assumption. $(\sigma_t^{(i)})^2$ is bounded from above by $v_+^{(i)}$

Then, the optimal linear overestimation of $\sigma_t(x)$ on $[v_-, v_+]$ (with $v_- = \sum_{i=1}^n v_-^{(i)}$ and $v_+ = \sum_{i=1}^n v_+^{(i)}$) is

$$\frac{1}{4a} + a \sum_{i=1}^{n} (\sigma_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i}))^2$$
(8)

with a the single positive real root of the quartic

$$P(a) = \frac{2\left[u^3\right]_{v_-}^{v_+}}{3}a^4 - \frac{4\left[u^{\frac{5}{2}}\right]_{v_-}^{v_+}}{5}a^3 + \frac{\left[u^{\frac{3}{2}}\right]_{v_-}^{v_+}}{3}a - \frac{\left[u\right]_{v_-}^{v_+}}{8}$$
(9)

^[17] Eyke Hüllermeier and Willem Waegeman. "Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods". In: Machine Learning 110.3 (2021), pp. 457-506.

Proposed Acquisition Function

• Assumption.
$$v_+ \le \left(\sqrt{v_-} + 2\sum_{i=1}^n \sum_{\substack{j=1\\j \ne i}}^n \sqrt{v_-^{(i)} v_-^{(j)}}\right)^2$$

Theorem. $\forall x \in C$, $\forall t \in \mathbb{N}$, we have

$$\sigma_t(\boldsymbol{x}) \leq \frac{1}{4a} + a \sum_{i=1}^n (\sigma_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i}))^2 \leq \sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x}_{\mathcal{V}_i})$$

Therefore, an algorithm maximizing

$$\varphi_{t}(\boldsymbol{x}) = \sum_{i=1}^{n} \varphi_{t}^{(i)}(\boldsymbol{x}_{\mathcal{V}_{i}})$$
$$= \sum_{i=1}^{n} \mu_{t}^{(i)}(\boldsymbol{x}_{\mathcal{V}_{i}}) + \beta_{t}^{\frac{1}{2}} a(\sigma_{t}^{(i)}(\boldsymbol{x}_{\mathcal{V}_{i}}))^{2}$$
(10)

should have a lower regret than current state-of-the-art BO algorithms

イロト 不同 トイヨト イヨト ショー ショク

Maximizing φ_t

- We use the Alternating Directions Method of Multipliers (ADMM) [18] to maximize φ_t in a decentralized fashion
 - Excellent performance of ADMM on nonconvex problems [19], [20]
 - [21] extends the global maximization guarantee of ADMM to restricted prox-regular functions
- **Definition** (restricted prox-regularity). For a lower semi-continuous function f, let $M \in \mathbb{R}^+, f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and ∂f the set of general subgradients of f. Define the exclusion set $S_M = \{ x \in \text{dom}(f) : ||d|| > M$ for all $d \in \partial f(x) \}$. f is called restricted prox-regular if, for any M > 0 and bounded set $T \subseteq \text{dom}(f)$, there exists $\gamma > 0$ such that

$$f(\boldsymbol{y}) + \frac{\gamma}{2} ||\boldsymbol{x} - \boldsymbol{y}||^2 \ge f(\boldsymbol{x}) + \boldsymbol{d}(\boldsymbol{y} - \boldsymbol{x}),$$
(11)

 $\forall \boldsymbol{x} \in T \setminus S_M, \ \boldsymbol{y} \in T, \ \boldsymbol{d} \in \partial f(\boldsymbol{x}), \ ||\boldsymbol{d}|| \leq M.$

A. Bardou

^[18] Daniel Gabay and Bertrand Mercier. "A dual algorithm for the solution of nonlinear variational problems via finite element approximation". In: Computers & mathematics with applications 2.1 (1976), pp. 17–40.

^[19] Athanasios P Liavas and Nicholas D Sidiropoulos. "Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers". In: IEEE Transactions on Signal Processing 63.20 (2015), pp. 5450–5463.

^[20] Rongjie Lai and Stanley Osher. "A splitting method for orthogonality constrained problems". In: Journal of Scientific Computing 58.2 (2014), pp. 431–449.

^[21] Yu Wang, Wotao Yin, and Jinshan Zeng. "Global convergence of ADMM in nonconvex nonsmooth optimization". In: Journal of Scientific Computing 78 (2019), pp. 29–63.

No-Regret Performance

- **Assumption**. φ_t is restricted prox-regular
- Theorem. Let $r_t = f(\boldsymbol{x}^*) f(\boldsymbol{x}^t)$ denote the instantaneous regret of DuMBO. Let $\delta \in (0,1)$ and $\beta_t = 2\log\left(\frac{|\mathcal{D}|\pi^2 t^2}{6\delta}\right)$. Then $\forall \boldsymbol{x} \in \mathcal{D}, \forall t \in \mathbb{N}$ we have

$$r_t \le 2\beta_t^{\frac{1}{2}} \left(a \sum_{i=1}^n \left(\sigma_t^{(i)}(\boldsymbol{x}^t) \right)^2 + \frac{1}{4a} \right)$$
 (12)

with probability at least $1 - \delta$.

- The regret bound (12) is lower than a no-regret algorithm, DEC-HBO [22]
- By piggybacking on the results of DEC-HBO, DuMBO is shown asymptotically optimal, that is

$$\lim_{t \to +\infty} \frac{R_t}{t} = 0 \tag{13}$$

^[22] Hoang et al., see n. 14.

Numerical Experiments

- \blacksquare DuMBO: does not have access to the natural additive decomposition of f
 - Must infer it with [23]
- ADD-DuMBO: has access to the natural additive decomposition of f when it exists
- Comparison with two decomposing BO algorithms: ADD-GPUCB [24] and DEC-HBO [25]
 - Recall that they must infer a decomposition when the MFS $\bar{d} > 3$
- Comparison with two solutions that make other assumptions
 - SAASBO [26] and TuRBO [27]
 - Recall that they do not offer no-regret guarantees

[27] David Eriksson et al. "Scalable global optimization via local bayesian optimization". In: Advances in neural information processing systems 32 (2019), 🔿

A. Bardou

^[23] Jacob Gardner et al. "Discovering and exploiting additive structure for Bayesian optimization". In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 1311–1319.

^[24] Kandasamy, Schneider, and Póczos, see n. 12.

^[25] Hoang et al., see n. 14.

^[26] David Eriksson and Martin Jankowiak. "High-dimensional Bayesian optimization with sparse axis-aligned subspaces". In: Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 493-503.

Experiments (Selection)

Discussion

Pros

- Excellent empirical performance
- Robust evaluation on multiple benchmarks
- Decentralized
- Theoretical guarantees (asymptotic optimality)

Cons

- Restricted prox-regularity of the acquisition function?
- Wall-clock time larger than SAASBO [28] or TuRBO [29]

ELE NOR

^[28] Eriksson and Jankowiak, see n. 26.

^[29] Eriksson et al., see n. 27.

Conclusion

- We proposed online methods for the optimization of a black-box objective function within a wireless network, that are
 - both centralized and decentralized
 - competitive / better than state-of-the-art solutions
 - able to deal with high-dimensional problems
 - asymptotically optimal (DuMBO)
- Future works
 - More technical applications
 - Dynamic problems
 - Multi-objective problems
 - Student-t processes instead of GPs?

Thank you for your attention

Peer-Reviewed Journals & International Conferences

- A. Bardou and T. Begin. "Analysis of a Decentralized Bayesian Optimization Algorithm for Improving Spatial Reuse in Dense WLANs." In: Computer Communications. 2023.
- A. Bardou, T. Begin and A. Busson. "Mitigating Starvations in Dense WLANs: A Multi-Armed Bandit Solution." In: Ad Hoc Networks. 2023.
- A. Bardou and T. Begin. "INSPIRE: Distributed Bayesian Optimization for Improving Spatial Reuse in Dense WLANs." In: MSWiM'22. 2022. Best Paper.
- A. Bardou, T. Begin and A. Busson. "Analysis of a Multi-Armed Bandit Solution to Improve the Spatial Reuse in Next-Generation WLANs." In: Computer Communications. 2022.
- A. Bardou, T. Begin and A. Busson. "Improving the Spatial Reuse in IEEE 802.11ax WLANs: A Multi-Armed Bandit Approach." In: MSWiM'21. 2021.

Under Submission

- A. Bardou, P. Thiran and T. Begin. "Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization." @ ICLR'24.
- S. Si-Mohammed, A. Bardou, T. Begin, I. Guérin Lassous and P. Vicat-Blanc. "Smart Integration of Network Simulation in Network Digital Twin for Optimizing IoT Networks." @ Future Generation Computer Systems.
- A. Bardou, J-M. Gorce and T. Begin. "Assessing the Performance of NOMA in a Multi-Cell Context: A General Evaluation Framework." @ INFOCOM'24.

National Conferences

- A. Bardou and T. Begin. "INSPIRE: Optimisation bayésienne distribuée pour l'amélioration de la réutilisation spatiale des WLANs denses." In: AlgoTel'22. 2022. Best Paper.
- **A. Bardou**, T. Begin and A. Busson. "Multi-Armed Bandit Algorithm for Spatial Reuse in WLANs: Minimizing Stations in Starvation." In: *ROADEF'22*. 2022.

A Fundamental Problem: The Exploration-Exploitation Dilemma

- **Exploration**: querying policy that maximizes the probability to be surprised
- **Exploitation**: querying policy that maximizes the probability to obtain high *f*-values according to actual beliefs

Appendix

Online Approaches for Spatial Reuse Optimization in Wi-Fi

Proposed solutions	Tuning of OBSS_PD	Tuning of TX_PWR	Dynamic MCS	Traffic Up/Down	Simulator	APs / channels
VTC'04 [30]		\checkmark		Up	Self-made	8/1
Infocom'20 [31]		\checkmark		Up/Down	Self-made	100/11
WCNC'15 [32]	\checkmark			Up	Self-made	100/3
WCNC'21 [33]	\checkmark	\checkmark	\checkmark	Down	ns-3	6/1
Globecom'20 [34]	\checkmark			Up/Down	ns-3	3/1
ADHOC'19 [35]	\checkmark	\checkmark		Down	Self-made	8/1
JNCA'19 [36]	\checkmark	\checkmark		Down	Self-made	8/1

Solutions evaluated on vanilla scenarios with virtually no theoretical guarantees

[30] Youngsoo Kim, Jeonggyun Yu, and Sunghyun Choi. "SP-TPC: a self-protective energy efficient communication strategy for IEEE 802.11 WLANs". In: IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004. Vol. 3. IEEE. 2004, pp. 2078–2082.

[31] Shuwei Qiu et al. "Joint access point placement and power-channel-resource-unit assignment for 802.11 ax-based dense WiFi with QoS requirements". In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE. 2020, pp. 2569–2578.

[32] Afaqui et al., see n. 4.

[33] Hyunjoong Lee, Hyung-Sin Kim, and Saewoong Bahk. "LSR: link-aware spatial reuse in IEEE 802.11 ax WLANs". In: 2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE. 2021, pp. 1–6.

[34] Elif Ak and Berk Canberk. "FSC: Two-scale Al-driven fair sensitivity control for 802.11 ax networks". In: GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE. 2020, pp. 1–6.

[35] Wilhelmi et al., see n. 5.

[36] Francesc Wilhelmi et al. "Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs". In: Journal of Network and Computer Applications 127 (2019), pp. 26-42.

A. Bardou

PhD Thesis Defense

Appendix

Finding the Best Arm in the Reservoir

- Our optimizer builds upon [37], which assumes $f(\pmb{x}_i) + \epsilon \sim \mathcal{N}\left(\mu_i, 1\right)$
- A Gaussian conjugate prior is placed on $\theta = \mu_i$ and updated with data We assume $f(x_i) + \epsilon \sim \mathcal{N}(\mu_i, \sigma_i^2)$
 - We place a Normal-Gamma conjugate prior on $\boldsymbol{\theta} = (\mu_i, \sigma_i^{-2})$ with parameters $(\mu_i^0, \lambda_i^0, \alpha_i^0, \beta_i^0)$ and update formulas

$$u_i^n = \frac{\lambda_i^0 \mu_i^0 + n\bar{y}}{\lambda_i^0 + n},\tag{14}$$

$$\lambda_i^n = \lambda_i^0 + n,\tag{15}$$

$$\alpha_i^n = \alpha_i^0 + \frac{n}{2},\tag{16}$$

$$\beta_i^n = \beta_i^0 + \frac{1}{2} \left(ns + \frac{\lambda_i^0 n (\bar{y} - \mu_i^0)^2}{\lambda_i^0 + n} \right).$$
(17)

 To identify the best arm, we rely on Thompson sampling, which samples an arm k with probability

$$p_{k} = \int_{\Theta} \mathbb{1}_{\mathbb{E}[y|k,\boldsymbol{\theta}] = \max_{k' \in \mathcal{A}} \mathbb{E}[y|k',\boldsymbol{\theta}]} p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$
(18)

[37] Wilhelmi et al., see n. 5.

A. Bardou

Evaluation - T1

- Control strategies: DEFAULT, ϵ -GREEDY ($\epsilon \propto \frac{1}{t}$)
- SOTA strategies: UNIF+GTS [38], GM+GTS, GM+NGTS
- **5**0 ms per test, 120 seconds simulated \implies 2,400 iterations

[38]	Wilhe	lmi et	al.,	see	n.	5
---	-----	-------	--------	------	-----	----	---

INSPIRE - Surrogate Modelling: Gaussian Process

- A Gaussian Process (GP) is a collection of random variables $\{Y(\pmb{x})\}_{\pmb{x}\in\mathcal{C}}$ indexed by a set \mathcal{C}
 - Any finite set $\{Y(x_1), \cdots, Y(x_n)\}$ has a joint multivariate Gaussian distribution
 - A GP is fully specified by

$$\mu(\boldsymbol{x}) = \mathbb{E}[Y(\boldsymbol{x})] \tag{19}$$

$$k(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}\left[\left(Y(\boldsymbol{x}) - \mu(\boldsymbol{x})\right)\left(Y(\boldsymbol{x}') - \mu(\boldsymbol{x}')\right)\right]$$
(20)

- **Assumption**. $\forall i \in [1, n], f^{(i)}$ is a Gaussian Process $\mathcal{GP}\left(0, k^{(i)}\left(\boldsymbol{x}_{\mathcal{N}_{i}}, \boldsymbol{x}_{\mathcal{N}_{i}}'\right)\right)$
 - $x_{\mathcal{N}_i} \in \mathcal{C}_{\mathcal{N}_i} = \prod_{j \in \mathcal{N}_i} \mathcal{C}^{(j)}$ • $k^{(i)}$ is a Matérn covariance function [39] with its hyperparameter $\nu = 3/2$

$$k^{(i)}(\boldsymbol{x}, \boldsymbol{x}') = s_i^2 \left(1 + \frac{\sqrt{3} ||\boldsymbol{x} - \boldsymbol{x}'||_2}{\rho_i} \right) e^{-\frac{\sqrt{3} ||\boldsymbol{x} - \boldsymbol{x}'||_2}{\rho_i}}$$
(21)

• with hyperparameters $(s_i^2, \rho_i) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$

[39] Marc G Genton. "Classes of kernels for machine learning: a statistics perspective". In: Journal of machine learning research 2.Dec (2001), pp. 299–312. (□ → (□) → (Ξ) →

Appendix

Bayesian Optimization: Inference Formulas

- Pioneering work [40]
- **Assumption**. $\forall i \in [1, n], f^{(i)}$ is a Gaussian Process $\mathcal{GP}\left(0, k^{(i)}\left(\boldsymbol{x}_{\mathcal{N}_{i}}, \boldsymbol{x}_{\mathcal{N}_{i}}'\right)\right)$

$$\begin{array}{l} \bullet \quad \boldsymbol{x}_{\mathcal{N}_{i}} \in \mathcal{C}_{\mathcal{N}_{i}} = \prod_{j \in \mathcal{N}_{i}} \mathcal{C}^{(j)} \\ \bullet \quad \forall \boldsymbol{x} \in \mathcal{C}_{\mathcal{N}_{i}}, f^{(i)}(\boldsymbol{x}) \sim \mathcal{N}\left(0, \left(\sigma_{0}^{(i)}(\boldsymbol{x})\right)^{2}\right) \end{array}$$

Given $\mathcal{D}_t = (\mathbf{X}_t, \mathbf{y}_t)$, with the $t \times d$ matrix $\mathbf{X}_t = (\mathbf{x}_j)_{j \in [1,t]}^{\top}$ and the t-dimensional vector $\mathbf{y}_t = (y_j)_{j \in [1,t]}^{\top}$, $f^{(i)}(\mathbf{x}) | \mathcal{D}_t \sim \mathcal{N}\left(\mu_t^{(i)}(\mathbf{x}), \left(\sigma_t^{(i)}(\mathbf{x})\right)^2\right)$ with

$$\mu_t^{(i)}(\boldsymbol{x}) = \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{X}_t)^\top \boldsymbol{K}_t^{-1} \boldsymbol{y}_t$$
(22)

$$\left(\sigma_t^{(i)}(\boldsymbol{x})\right)^2 = k(\boldsymbol{x}, \boldsymbol{x}) - \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{X}_t) \boldsymbol{K}_t^{-1} \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{X}_t)$$
(23)

• with $k(x, X_t) = (k(x, x_j))_{x_j \in X_t}$ and $K_t = (k(x_j, x_k))_{x_j, x_k \in X_t}$

[40] Williams and Rasmussen, see n. 7.

INSPIRE - Acquisition Function

•
$$\varphi_t^{(i)} : \mathcal{C}_{\mathcal{N}_i} \to \mathbb{R}$$

Many candidates: GP-UCB [41], KG [42], PI [43]

Expected Improvement [44]

$$\varphi_t^{(i)}(\boldsymbol{x}) = \mathbb{E}_{f^{(i)}(\boldsymbol{x}) \sim \mathcal{N}\left(\mu_t^{(i)}(\boldsymbol{x}), \left(\sigma_t^{(i)}(\boldsymbol{x})\right)^2\right)} \left[\left(f^{(i)}(\boldsymbol{x}) - y_t^*\right)^+ \right]$$
$$= \left(\mu_t^{(i)}(\boldsymbol{x}) - y_t^*\right) \Phi(z(\boldsymbol{x})) + \sigma_t^{(i)}(\boldsymbol{x})\phi(z(\boldsymbol{x})) \tag{24}$$

with $y_t^* = \max_{j \in [1,t]} y_j$, $(x)^+ = \max(0,x)$, $z(\boldsymbol{x}) = \left(\mu_t^{(i)}(\boldsymbol{x}) - y_t^*\right) / \sigma_t^{(i)}(\boldsymbol{x})$, Φ and ϕ the cdf and pdf of $\mathcal{N}(0,1)$ respectively

We set
$$oldsymbol{x}^{(i)} = rg\max_{oldsymbol{x} \in \mathcal{C}_{\mathcal{N}_i}} arphi_t^{(i)}(oldsymbol{x})$$

[41] Srinivas et al., see n. 15.

[44] Mockus, see n. 8.

A. Bardou

^[42] Shanti S Gupta and Klaus J Miescke. "Bayesian look ahead one-stage sampling allocations for selection of the best population". In: Journal of statistical planning and inference 54.2 (1996), pp. 229–244.

^[43] Donald R. Jones, Matthias Schonlau, and William J. Welch. "Efficient global optimization of expensive black-box functions". In: Journal of Global optimization 13.4 (1998), 455–492.

INSPIRE - Minimax Optimality

• Objective to minimize: $g(\boldsymbol{x}) = |\sum_{i=1}^{n} f^{(i)}(\boldsymbol{x}^{(i)}) - f(\boldsymbol{x})|$ • $\boldsymbol{x}^{(i)} \in \mathcal{C}_{\mathcal{N}_{i}}$ is the prescription of AP i

Classical formulation of a minimax problem: $\inf_{\boldsymbol{x}} \sup_{\boldsymbol{y}} g(\boldsymbol{x}, \boldsymbol{y})$

- For INSPIRE, we derive $B(\boldsymbol{x}) \geq g(\boldsymbol{x})$
 - \blacksquare Non-uniform upper bound of g
 - \blacksquare Lowest upper bound given the assumed information about g
- We minimize B(x) to find a promising consensus
- Given the strong similarity with a minimax optimization task, we call $\tilde{x} = \arg\min_{x \in C} B(x)$ a minimax optimum

Appendix

INSPIRE - Computational Overhead

INSPIRE - Different Complexities

• $x^+ \in \mathcal{C}$ recommended by INSPIRE • Two random vectors $(x_1, x_2) \in \mathcal{C}^2$

Plot
$$(a, b, f(a\boldsymbol{x}_1 + b\boldsymbol{x}_2 + \boldsymbol{x}^+))$$

三日 のへの

INSPIRE - Alternatives

- Single GP: Centralized version of INSPIRE
- GPs w/o agg.: Decentralized version without consensus

DuMBO - Factor Graph

• Recall that we assume $f = \sum_{i=1}^{n} f^{(i)}$

This can be represented by a factor graph

- e.g, $f(\boldsymbol{x}) = f_1(x_1, x_3) + f_2(x_2) + f_3(x_2, x_3) + f_4(x_1, x_3)$
- For this decomposition, the MFS $\bar{d} = 2$
- Each factor node i ($i \in [1, n]$) can communicate with the variable nodes in V_i

• e.g.
$$\mathcal{V}_1 = \{1, 3\}$$

- Each variable node j ($j \in [1, d]$) can communicate with the factor nodes in \mathcal{F}_j
 - e.g. $\mathcal{F}_3 = \{1, 3, 4\}$

- Therefore,
$$f(m{x}) = \sum_{i=1}^n f^{(i)}(m{x}_{\mathcal{V}_i})$$

 We want a decentralized algorithm that can be run on this factor graph

DuMBO - Inferring the Decomposition

The additive decomposition can be inferred by MCMC from data [45]

• Acceptance probability: $\mathcal{P}(\mathcal{M}'|\mathcal{M}) = \min\left(1, \frac{p(\boldsymbol{y}|\boldsymbol{X}, \mathcal{M}')g(\mathcal{M}'|\mathcal{M})}{p(\boldsymbol{y}|\boldsymbol{X}, \mathcal{M})g(\mathcal{M}|\mathcal{M}')}\right)$

Given $\mathcal{M}_1, \cdots, \mathcal{M}_k$ additive decompositions, we optimize

$$\varphi_t(\boldsymbol{x}) = \frac{1}{k} \sum_{i=1}^k \varphi_t^{\mathcal{M}_i}(\boldsymbol{x})$$
(25)

[45] Gardner et al., see n. 23.

DuMBO - Maximizing φ_t

$$\begin{array}{l} \text{maximize} \quad \sum_{i=1}^{n} \varphi_t^{(i)}(\boldsymbol{x}^{(i)}) \\ \text{such that} \quad \boldsymbol{x}_{\mathcal{V}_i \cap \mathcal{V}_j}^{(i)} = \boldsymbol{x}_{\mathcal{V}_i \cap \mathcal{V}_j}^{(j)}, \forall i, j \in [1, n] \end{array}$$

with $oldsymbol{x}^{(i)} \in \mathcal{C}^{(i)}$

ullet Introducing a global consensus variable $ar{m{x}}\in\mathcal{C}$,

maximize
$$\sum_{i=1}^{n} \varphi_t^{(i)}(\boldsymbol{x}^{(i)})$$
such that $\boldsymbol{x}_{\mathcal{V}_i}^{(i)} = \bar{\boldsymbol{x}}_{\mathcal{V}_i}, \forall i \in [1, n]$
(27)

Augmented Lagrangian relaxation $\mathcal{L}_\eta(\pmb{x}^{(1)},\cdots,\pmb{x}^{(n)},ar{\pmb{x}},\pmb{\lambda})=\sum_{i=1}^n\mathcal{L}_\eta^{(i)}$ with

$$\mathcal{L}_{\eta}^{(i)}(\boldsymbol{x}^{(i)}, \boldsymbol{\lambda}^{(i)}, \bar{\boldsymbol{x}}_{\mathcal{V}_{i}}) = \varphi_{t}^{(i)}(\boldsymbol{x}^{(i)}) - \boldsymbol{\lambda}^{(i)\top}(\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}}_{\mathcal{V}_{i}}) - \frac{\eta}{2} ||\boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}}_{\mathcal{V}_{i}}||_{2}^{2}$$
(28)

with $oldsymbol{\lambda}^{(i)}$ the Lagrange multipliers for $\mathcal{L}_{\eta}^{(i)}$

DuMBO - ADMM

- We use ADMM [46] to maximize \mathcal{L}_{η}
- Iterative method that successively finds, at iteration k,

$$\boldsymbol{x}_{k+1}^{(1)} = \arg\max_{\boldsymbol{x}^{(1)}} \mathcal{L}_{\eta}^{(1)}(\boldsymbol{x}^{(1)}, \bar{\boldsymbol{x}}_{k}, \boldsymbol{\lambda}_{k}) \\
\vdots \\
\boldsymbol{x}_{k+1}^{(n)} = \arg\max_{\boldsymbol{x}^{(n)}} \mathcal{L}_{\eta}^{(n)}(\boldsymbol{x}^{(n)}, \bar{\boldsymbol{x}}_{k}, \boldsymbol{\lambda}_{k}) \\
\bar{\boldsymbol{x}}_{k+1} = \arg\max_{\bar{\boldsymbol{x}}} \mathcal{L}_{\eta}(\boldsymbol{x}_{k+1}^{(1)}, \cdots, \boldsymbol{x}_{k+1}^{(n)}, \bar{\boldsymbol{x}}, \boldsymbol{\lambda}_{k}) \quad (29) \\
\boldsymbol{\lambda}_{k+1} = \arg\max_{\boldsymbol{\lambda}} \mathcal{L}_{\eta}(\boldsymbol{x}_{k+1}^{(1)}, \cdots, \boldsymbol{x}_{k+1}^{(n)}, \bar{\boldsymbol{x}}_{k+1}, \boldsymbol{\lambda}) \quad (30)$$

Note that x⁽¹⁾_{k+1}, ..., x⁽ⁿ⁾_{k+1} can be found concurrently
 Note that (29) and (30) have closed forms

^[46] Gabay and Mercier, see n. 18.

DuMBO - Asymptotic Optimality

- Piggybacking on the results of [47]
- **Theorem 1**: the instantaneous regret of DEC-HBO (discrete domain) is

$$r_t \le 2\beta_t^{\frac{1}{2}} \sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x}^t)$$
(31)

- Note that this regret bound is larger than ours
- **Theorem 2**: DEC-HBO is asymptotically optimal in a discrete domain
- Theorem 3: DEC-HBO is asymptotically optimal in a continuous domain
 Assumption. f is Lipschitz-continuous

^[47] Hoang et al., see n. 14.

DuMBO - Other Experiments

PhD Thesis Defense

DuMBO - Wall-Clock Time

