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Introduction What is a wireless network?

Wireless Network

Performance metrics (e.g. users throughput) easy to describe
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Introduction What is a wireless network?

Wireless Network

Performance metrics (e.g. users throughput) very hard to describe
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Introduction What does it mean to optimize a wireless network?

Optimization of a Wireless Network

The network has parameters and f : C → R an objective function

Goal: tune the parameters to maximize the objective f
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Introduction Problem addressed in this thesis

Online, Black-Box Optimization of a Wireless Network?

Black-Box: the closed form of f is unknown (or does not exist)
Only noisy-corrupted f -values are observable by query

Online: the learning data is collected during the optimization process
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Introduction Problem addressed in this thesis

The Notion of Regret

x∗ = argmaxx∈C f(x)

Instantaneous regret at time t:

rt = f(x∗)− f(xt) (1)

Cumulative regret at time t:

Rt =

t∑
k=1

rk (2)

Asymptotic optimality

lim
t→+∞

Rt

t
= 0 (3)

Given enough time, x∗ will be the most queried configuration (by far!)
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Introduction Problem addressed in this thesis

Example: Spatial Reuse Optimization in WLANs

Maximize an objective function
in a WLAN (e.g. Wi-Fi network)

Each is an access point (AP)
APs serve stations (STAs)

Each AP i has two parameters
denoted x(i) ∈ C(i)

Transmission power (TX PWR),
sensibility threshold (OBSS PD)
Dynamical update with IEEE
802.11ax amendment [1] (Wi-Fi
6)

Spatial reuse optimization

is hard
must be addressed in
next-generation WLANs

[1] “IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems - Local and Metropolitan Area
Networks–Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”. In: IEEE Std
802.11-2020 (Revision of IEEE Std 802.11-2016) (2021).
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Outline

Outline

Introduction

Contribution 1: Multi-Armed Bandit Approaches for 802.11

Contribution 2: Decentralized Bayesian Optimization for 802.11

Contribution 3: Assessing the Benefits of NOMA for Next-Generation
Cellular Networks

Collaboration with Jean-Marie Gorce, INSA Lyon

Contribution 4: Decentralized, No-Regret Bayesian Optimization of
High-Dimensional Functions

Collaboration with Patrick Thiran, EPFL

Conclusion
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MAB Solution

Contribution 1

Multi-Armed Bandit Approaches for 802.11
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MAB Solution Method

Context

WLAN with n APs, m STAs

Each AP has two discrete parameters, with 20 values each

|C| = 202n configurations
Can be reduced to |C| = 200n by integrating an IEEE 802.11ax constraint

Assumption. The WLAN is equipped with a controller able to gather the
throughputs of the STAs

Assumption. The APs and the STAs do not move in space

Mild assumption for stadiums, open-spaces and M2M networks

f : C → R is an ad-hoc objective function maximized when there is no
starvation in the WLAN

A STA is said in starvation when its throughput is lower than a given threshold

The problem is framed as a Multi-Armed Bandit (MAB)

Each configuration x is an arm, returning a reward f(x) + ϵ when pulled
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MAB Solution Method

Overview

C is too large to explore all the arms in a reasonable amount of time

To overcome this, we propose two algorithms:

The sampler must explore the configurations space and gather configurations
that appear promising configurations in a reservoir
The optimizer must identify the best configuration in the reservoir
(Thompson sampling [2])

[2] William R Thompson. “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples”. In: Biometrika
25.3-4 (1933), pp. 285–294.
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MAB Solution Method

Building the Reservoir

State-of-the-art: Uniform sampling in C

Assumption (regularity).

∃L > 0,∀xi,xj ∈ C, ||xi − xj ||1 = 1 =⇒ |f(xi)− f(xj)| < L (4)

Two proposed samplers

Gaussian Mixture Mixture of hyperspheres
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MAB Solution Results

Evaluation

Evaluation through simulation with ns-3 [3], 22 replications

Evaluation on a real-world based scenario (selection)

Variable MCS, uplink/downlink traffic

10 APs, 50 STAs

[3] The ns3 Project. The Network Simulator ns-3. https://www.nsnam.org/. Accessed: 2021-09-30. 2020.
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MAB Solution Results

Evaluation

Control strategies: DEFAULT

SOTA strategies: WCNC’15 [4], JNCA’19 [5], GM+NGTS, HM+NGTS

75 ms per test, 120 seconds simulated =⇒ 1,600 iterations

Strategy Average Regret
Rt/t

DEFAULT 0.632 ±0.001
WCNC’15 0.438 ±0.001
JNCA’19 0.399 ±0.001
GM+NGTS 0.472 ±0.021
HM+NGTS 0.237 ±0.011

[4] M Shahwaiz Afaqui et al. “Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax”. In: 2015 IEEE wireless communications and
networking conference (WCNC). IEEE. 2015, pp. 1060–1065.

[5] Francesc Wilhelmi et al. “Collaborative spatial reuse in wireless networks via selfish multi-armed bandits”. In: Ad Hoc Networks 88 (2019),
pp. 129–141.

A. Bardou PhD Thesis Defense September 7th, 2023 13 / 36



MAB Solution Conclusion

Discussion

Pros

Two solutions competitive against state-of-the-art strategies
Robust evaluation (complex scenarios, credible number of APs)

Cons

No theoretical guarantees
Many hyperparameters to set
Centralized solution
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Decentralized BO for 802.11

Contribution 2

Decentralized Bayesian Optimization for 802.11
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Decentralized BO for 802.11 Method

Context

WLAN with n APs, m STAs

Each AP i has two continuous parameters, within C(i) = [−82,−62]× [1, 21]

C = C(1) × · · · × C(n)

d = dim C = 2n

Assumption. The APs and the STAs do not move in space

f : C → R+ is built on the proportional fairness of the STAs’ throughputs
T (x) = (T1(x), · · · , Tm(x))

f(x) =

m∑
i=1

log Ti(x) (5)

argmaxx∈C f(x) is a natural trade-off between

a large cumulated throughput ||T (x)||1
a large fairness index

||T (x)||21
m||T (x)||22

[6]

[6] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. “A quantitative measure of fairness and discrimination”. In: Eastern Research
Laboratory, Digital Equipment Corporation, Hudson, MA 21 (1984).
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Decentralized BO for 802.11 Method

Decentralized Method

Assumption. Each AP can only communicate with APs in its radio range

Ni: indices of reachable APs for AP i, including i itself
Si: the STAs associated with AP i

Additive decomposition of f such as f(x) =
∑n

i=1 f
(i)(x)

f (i)(x) =
∑

j∈Si
log Tj(x)?

f (i)(x) =
∑

j∈Ni

1
|Nj |

∑
k∈Sj

log Tk(x) exploits the whole local information
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Decentralized BO for 802.11 Method

Bayesian Optimization

Assumption. ∀i ∈ [1, n], f (i) is a Gaussian Process GP
(
0, k(i)

(
xNi ,x

′
Ni

))
xNi ∈ CNi =

∏
j∈Ni

C(j)

∀x ∈ CNi , f
(i)(x) ∼ N

(
0,
(
σ
(i)
0 (x)

)2
)

Pioneering work [7] conditions the model on Dt

∀x ∈ CNi , f
(i)(x)|Dt ∼ N

(
µt(x),

(
σ
(i)
t (x)

)2
)

Acquisition function φ
(i)
t : CNi

→ R
Expected Improvement [8]

φ
(i)
t (x) = E

f(i)(x)∼N
(
µ
(i)
t (x),

(
σ
(i)
t (x)

)2
) [(

f (i)(x)− y∗
t

)+
]

We set x(i) = argmaxx∈CNi
φ

(i)
t (x)

[7] Christopher K. I. Williams and Carl Edward Rasmussen. “Gaussian Processes for Regression”. In: Conference on Neural Information Processing
Systems (NeurIPS’95). 1995.

[8] Jonas Mockus. “Application of Bayesian approach to numerical methods of global and stochastic optimization”. In: Journal of Global Optimization 4
(1994), pp. 347–365.
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Decentralized BO for 802.11 Method

Consensus Function

Assumption. ∀i ∈ [1, n], f (i) is Li-Lipschitz continuous

Theorem.

Let Pk =
{
x
(i)
k

}
i∈Nj

be the prescriptions received by AP j =
⌈
k
2

⌉
for its

parameter k ∈ [1, 2n]
Let x̃k be the median of Pk, weighted by the Lipschitz constants {Li}i∈Nj

Then, the vector x̃ = (x̃1, · · · , x̃2n) is minimax optimal

A. Bardou PhD Thesis Defense September 7th, 2023 19 / 36



Decentralized BO for 802.11 Results

Evaluation

Evaluation through simulation with ns-3, 22 replications

Two topologies with variable MCS and uplink/downlink traffic

T1: Open spaces, Cisco San Francisco

10 APs, 50 STAs
T2: Residential Building

14 APs, 56 STAs
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Decentralized BO for 802.11 Results

Evaluation

Control strategy: DEFAULT

SOTA strategies: WCNC’15 [9], JNCA’19 [10], GM+NGTS, HM+NGTS, INSPIRE,
INSPIRE LIM

75 ms per test, 30 seconds of simulated time =⇒ 400 iterations

Average Regret Rt/t
Solution T1 T2

DEFAULT 0.652 ± 0.001 0.429 ± 0.004
WCNC’15 0.470 ± 0.001 0.327 ± 0.005
JNCA’19 0.437 ± 0.001 0.398 ± 0.006
GM+NGTS 0.527 ± 0.016 0.375 ± 0.006
HM+NGTS 0.305 ± 0.006 0.379 ± 0.005
INSPIRE 0.193 ± 0.005 0.294 ± 0.006
INSPIRE LIM 0.233 ± 0.005 0.329 ± 0.005

[9] Afaqui et al., see n. 4.

[10] Wilhelmi et al., see n. 5.
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Decentralized BO for 802.11 Results

Network Oriented Metrics

T1

T2
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Decentralized BO for 802.11 Conclusion

Discussion

Pros

Excellent empirical performance
Robust evaluation (complex scenarios, credible number of APs)
Decentralized
Theoretical guarantees (minimax optimal at each iteration)

Cons

Asymptotic optimality?
Impact of rounding?
High-dimensional factors in denser topologies?
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No-Regret High-Dimensional BO

Contribution 4

Decentralized, No-Regret Bayesian Optimization of High-Dimensional Functions
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No-Regret High-Dimensional BO Context

BO in High-Dim. Input Spaces

Recall that BO as defined by [11] involves
Assumption. f : C ⊂ Rd → R is GP(µ, k)
An acquisition function φt : C → R to discover promising queries
xt+1 = argmaxx∈C φt(x)

Classical BO struggles with high-dimensional input spaces because of the
global optimization algorithms used to compute xt+1 = argmaxx∈C φt(x)

Solution:
Assumption. An additive decomposition for f , that is

f(x) =

n∑
i=1

f (i)(xVi) (6)

with f (i) : C(i) ⊆ Rd(i) → R being GP
(
µ(i), k(i)

)
, ∀i ∈ [1, n]

Maximum Factor Size (MFS): d̄ = maxi∈[1,n] d
(i)

[11] Williams and Rasmussen, see n. 7.
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No-Regret High-Dimensional BO Context

Decomposing BO Algorithms

Solution MFS Assumption Find argmaxφt

ADD-GPUCB [12] d̄ = 1 Yes
QFF [13] d̄ = 1 Yes
DEC-HBO [14] d̄ ≤ 3 Under assumptions

DuMBO (Ours) None Under assumptions

We propose a Decentralized Message-passing Bayesian Optimization
algorithm (DuMBO)

We demonstrate its asymptotic optimality
We demonstrate its competitiveness on synthetic and real-world problems

[12] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. “High dimensional Bayesian optimisation and bandits via additive models”. In:
International conference on machine learning. PMLR. 2015, pp. 295–304.

[13] Mojmir Mutny and Andreas Krause. “Efficient high dimensional bayesian optimization with additivity and quadrature fourier features”. In: Advances
in Neural Information Processing Systems 31 (2018).

[14] Trong Nghia Hoang et al. “Decentralized high-dimensional Bayesian optimization with factor graphs”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 32. 1. 2018.
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No-Regret High-Dimensional BO Improving the Decentralized GP-UCB

Decentralized GP-UCB
The GP-UCB acquisition function is φt(x) = µt(x) + β

1
2
t σt(x) [15]

σt(x) =

√∑n
i=1

(
σ
(i)
t (xVi

)
)2

cannot be computed in a decentralized fashion

Previous works [16] propose to apply GP-UCB to each factor f (i) individually

The optimized acquisition function is therefore

φt(x) =

n∑
i=1

φ
(i)
t (xVi

)

=

n∑
i=1

µ
(i)
t (xVi

) + β
1
2
t σ

(i)
t (xVi

)

= µt(x) + β
1
2
t

n∑
i=1

σ
(i)
t (xVi

) (7)

In (7), σt(x) is replaced by the overestimation
∑n

i=1 σ
(i)
t (xVi)

The decentralized algorithms explore too much!

[15] Niranjan Srinivas et al. “Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting”. In: IEEE Transactions on
Information Theory 58.5 (2012), pp. 3250–3265. doi: doi:10.1109/tit.2011.2182033.

[16] Kandasamy, Schneider, and Póczos, see n. 12; Hoang et al., see n. 14.
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No-Regret High-Dimensional BO Improving the Decentralized GP-UCB

Reducing the Gap

The variance term (σ
(i)
t )2 can be decomposed [17] into

An epistemic term: uncertainty due to the lack of observed data
An aleatoric term v

(i)
− : observational noise, natural lower bound of (σ

(i)
t )2

Assumption. (σ
(i)
t )2 is bounded from above by v

(i)
+

Then, the optimal linear overestimation of σt(x) on [v−, v+] (with

v− =
∑n

i=1 v
(i)
− and v+ =

∑n
i=1 v

(i)
+ ) is

1

4a
+ a

n∑
i=1

(σ
(i)
t (xVi

))2 (8)

with a the single positive real root of the quartic

P (a) =
2
[
u3
]v+
v−

3
a4 −

4
[
u

5
2

]v+
v−

5
a3 +

[
u

3
2

]v+

v−

3
a−

[u]
v+
v−

8
(9)

[17] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods”. In:
Machine Learning 110.3 (2021), pp. 457–506.
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No-Regret High-Dimensional BO Improving the Decentralized GP-UCB

Proposed Acquisition Function

Assumption. v+ ≤
(
√
v− + 2

∑n
i=1

∑n
j=1
j ̸=i

√
v
(i)
− v

(j)
−

)2

Theorem. ∀x ∈ C, ∀t ∈ N, we have

σt(x) ≤
1

4a
+ a

n∑
i=1

(σ
(i)
t (xVi

))2 ≤
n∑

i=1

σ
(i)
t (xVi

)

Therefore, an algorithm maximizing

φt(x) =

n∑
i=1

φ
(i)
t (xVi

)

=

n∑
i=1

µ
(i)
t (xVi

) + β
1
2
t a(σ

(i)
t (xVi

))2 (10)

should have a lower regret than current state-of-the-art BO algorithms
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No-Regret High-Dimensional BO DuMBO

Maximizing φt

We use the Alternating Directions Method of Multipliers (ADMM) [18] to
maximize φt in a decentralized fashion

Excellent performance of ADMM on nonconvex problems [19], [20]
[21] extends the global maximization guarantee of ADMM to restricted
prox-regular functions

Definition (restricted prox-regularity). For a lower semi-continuous function f , let
M ∈ R+, f : Rn → R ∪ {+∞} and ∂f the set of general subgradients of f . Define the
exclusion set SM = {x ∈ dom(f) : ||d|| > M for all d ∈ ∂f(x)}. f is called restricted
prox-regular if, for any M > 0 and bounded set T ⊆ dom(f), there exists γ > 0 such that

f(y) +
γ

2
||x− y||2 ≥ f(x) + d(y − x), (11)

∀x ∈ T \ SM , y ∈ T , d ∈ ∂f(x), ||d|| ≤ M .

[18] Daniel Gabay and Bertrand Mercier. “A dual algorithm for the solution of nonlinear variational problems via finite element approximation”. In:
Computers & mathematics with applications 2.1 (1976), pp. 17–40.

[19] Athanasios P Liavas and Nicholas D Sidiropoulos. “Parallel algorithms for constrained tensor factorization via alternating direction method of
multipliers”. In: IEEE Transactions on Signal Processing 63.20 (2015), pp. 5450–5463.

[20] Rongjie Lai and Stanley Osher. “A splitting method for orthogonality constrained problems”. In: Journal of Scientific Computing 58.2 (2014),
pp. 431–449.

[21] Yu Wang, Wotao Yin, and Jinshan Zeng. “Global convergence of ADMM in nonconvex nonsmooth optimization”. In: Journal of Scientific
Computing 78 (2019), pp. 29–63.
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No-Regret High-Dimensional BO Asymptotic Optimality

No-Regret Performance

Assumption. φt is restricted prox-regular

Theorem. Let rt = f(x∗)− f(xt) denote the instantaneous regret of

DuMBO. Let δ ∈ (0, 1) and βt = 2 log
(

|D|π2t2

6δ

)
. Then ∀x ∈ D,∀t ∈ N we

have

rt ≤ 2β
1
2
t

(
a

n∑
i=1

(
σ
(i)
t (xt)

)2
+

1

4a

)
(12)

with probability at least 1− δ.

The regret bound (12) is lower than a no-regret algorithm, DEC-HBO [22]

By piggybacking on the results of DEC-HBO, DuMBO is shown
asymptotically optimal, that is

lim
t→+∞

Rt

t
= 0 (13)

[22] Hoang et al., see n. 14.
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No-Regret High-Dimensional BO Experiments

Numerical Experiments

DuMBO: does not have access to the natural additive decomposition of f

Must infer it with [23]

ADD-DuMBO: has access to the natural additive decomposition of f when it
exists

Comparison with two decomposing BO algorithms: ADD-GPUCB [24] and
DEC-HBO [25]

Recall that they must infer a decomposition when the MFS d̄ > 3

Comparison with two solutions that make other assumptions

SAASBO [26] and TuRBO [27]
Recall that they do not offer no-regret guarantees

[23] Jacob Gardner et al. “Discovering and exploiting additive structure for Bayesian optimization”. In: Artificial Intelligence and Statistics. PMLR. 2017,
pp. 1311–1319.

[24] Kandasamy, Schneider, and Póczos, see n. 12.

[25] Hoang et al., see n. 14.

[26] David Eriksson and Martin Jankowiak. “High-dimensional Bayesian optimization with sparse axis-aligned subspaces”. In: Uncertainty in Artificial
Intelligence. PMLR. 2021, pp. 493–503.

[27] David Eriksson et al. “Scalable global optimization via local bayesian optimization”. In: Advances in neural information processing systems 32 (2019).
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No-Regret High-Dimensional BO Experiments

Experiments (Selection)
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No-Regret High-Dimensional BO Conclusion

Discussion

Pros

Excellent empirical performance
Robust evaluation on multiple benchmarks
Decentralized
Theoretical guarantees (asymptotic optimality)

Cons

Restricted prox-regularity of the acquisition function?
Wall-clock time larger than SAASBO [28] or TuRBO [29]

[28] Eriksson and Jankowiak, see n. 26.

[29] Eriksson et al., see n. 27.
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Conclusion

Conclusion

We proposed online methods for the optimization of a black-box objective
function within a wireless network, that are

both centralized and decentralized
competitive / better than state-of-the-art solutions
able to deal with high-dimensional problems
asymptotically optimal (DuMBO)

Future works

More technical applications
Dynamic problems
Multi-objective problems
Student-t processes instead of GPs?
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réutilisation spatiale des WLANs denses.” In: AlgoTel’22. 2022. Best Paper.
A. Bardou, T. Begin and A. Busson. ”Multi-Armed Bandit Algorithm for Spatial Reuse in
WLANs: Minimizing Stations in Starvation.” In: ROADEF’22. 2022.

A. Bardou PhD Thesis Defense September 7th, 2023 36 / 36



Appendix

A Fundamental Problem: The Exploration-Exploitation
Dilemma

Exploration: querying policy that maximizes the probability to be surprised
Exploitation: querying policy that maximizes the probability to obtain high
f -values according to actual beliefs
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Appendix

Online Approaches for Spatial Reuse Optimization in Wi-Fi

Proposed Tuning of Tuning of Dynamic Traffic Simulator APs /
solutions OBSS PD TX PWR MCS Up/Down channels

VTC’04 [30] ✓ Up Self-made 8/1
Infocom’20 [31] ✓ Up/Down Self-made 100/11
WCNC’15 [32] ✓ Up Self-made 100/3
WCNC’21 [33] ✓ ✓ ✓ Down ns-3 6/1

Globecom’20 [34] ✓ Up/Down ns-3 3/1
ADHOC’19 [35] ✓ ✓ Down Self-made 8/1
JNCA’19 [36] ✓ ✓ Down Self-made 8/1

Solutions evaluated on vanilla scenarios with virtually no theoretical guarantees

[30] Youngsoo Kim, Jeonggyun Yu, and Sunghyun Choi. “SP-TPC: a self-protective energy efficient communication strategy for IEEE 802.11 WLANs”.
In: IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004. Vol. 3. IEEE. 2004, pp. 2078–2082.

[31] Shuwei Qiu et al. “Joint access point placement and power-channel-resource-unit assignment for 802.11 ax-based dense WiFi with QoS
requirements”. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE. 2020, pp. 2569–2578.

[32] Afaqui et al., see n. 4.

[33] Hyunjoong Lee, Hyung-Sin Kim, and Saewoong Bahk. “LSR: link-aware spatial reuse in IEEE 802.11 ax WLANs”. In: 2021 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE. 2021, pp. 1–6.

[34] Elif Ak and Berk Canberk. “FSC: Two-scale AI-driven fair sensitivity control for 802.11 ax networks”. In: GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE. 2020, pp. 1–6.

[35] Wilhelmi et al., see n. 5.

[36] Francesc Wilhelmi et al. “Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs”. In: Journal of Network and
Computer Applications 127 (2019), pp. 26–42.
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Appendix

Finding the Best Arm in the Reservoir

Our optimizer builds upon [37], which assumes f(xi) + ϵ ∼ N (µi, 1)
A Gaussian conjugate prior is placed on θ = µi and updated with data

We assume f(xi) + ϵ ∼ N (µi, σ
2
i )

We place a Normal-Gamma conjugate prior on θ =
(
µi, σ

−2
i

)
with parameters(

µ0
i , λ

0
i , α

0
i , β

0
i

)
and update formulas

µn
i =

λ0
iµ

0
i + nȳ

λ0
i + n

, (14)

λn
i = λ0

i + n, (15)

αn
i = α0

i +
n

2
, (16)

βn
i = β0

i +
1

2

(
ns+

λ0
in(ȳ − µ0

i )
2

λ0
i + n

)
. (17)

To identify the best arm, we rely on Thompson sampling, which samples an arm k
with probability

pk =

∫
Θ

1E[y|k,θ]=maxk′∈A E[y|k′,θ]p(θ|D)dθ (18)

[37] Wilhelmi et al., see n. 5.
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Appendix

Evaluation - T1

Control strategies: DEFAULT, ϵ-GREEDY (ϵ ∝ 1
t )

SOTA strategies: UNIF+GTS [38], GM+GTS, GM+NGTS

50 ms per test, 120 seconds simulated =⇒ 2,400 iterations

Strategy Average Regret
Rt/t

DEFAULT 0.376 ±0.008
ϵ-GREEDY 0.458 ±0.011
UNIF+GTS 0.773 ±0.002
GM+GTS 0.354 ±0.007
GM+NGTS 0.313 ±0.007

[38] Wilhelmi et al., see n. 5.
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Appendix

INSPIRE - Surrogate Modelling: Gaussian Process

A Gaussian Process (GP) is a collection of random variables {Y (x)}x∈C
indexed by a set C

Any finite set {Y (x1), · · · , Y (xn)} has a joint multivariate Gaussian
distribution
A GP is fully specified by

µ(x) = E[Y (x)] (19)

k(x,x′) = E
[
(Y (x)− µ(x))

(
Y (x′)− µ(x′)

)]
(20)

Assumption. ∀i ∈ [1, n], f (i) is a Gaussian Process GP
(
0, k(i)

(
xNi ,x

′
Ni

))
xNi ∈ CNi =

∏
j∈Ni

C(j)

k(i) is a Matérn covariance function [39] with its hyperparameter ν = 3/2

k(i)(x,x′) = s2i

(
1 +

√
3||x− x′||2

ρi

)
e
−

√
3||x−x′||2

ρi (21)

with hyperparameters
(
s2i , ρi

)
∈ R∗

+ × R∗
+

[39] Marc G Genton. “Classes of kernels for machine learning: a statistics perspective”. In: Journal of machine learning research 2.Dec (2001),
pp. 299–312.
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Appendix

Bayesian Optimization: Inference Formulas

Pioneering work [40]

Assumption. ∀i ∈ [1, n], f (i) is a Gaussian Process GP
(
0, k(i)

(
xNi

,x′
Ni

))
xNi ∈ CNi =

∏
j∈Ni

C(j)

∀x ∈ CNi , f
(i)(x) ∼ N

(
0,
(
σ
(i)
0 (x)

)2
)

Given Dt = (Xt,yt), with the t× d matrix Xt = (xj)
⊤
j∈[1,t] and the

t-dimensional vector yt = (yj)
⊤
j∈[1,t], f

(i)(x)|Dt ∼ N
(
µ
(i)
t (x),

(
σ
(i)
t (x)

)2)
with

µ
(i)
t (x) = k(x,Xt)

⊤K−1
t yt (22)(

σ
(i)
t (x)

)2
= k(x,x)− k(x,Xt)K

−1
t k(x,Xt) (23)

with k(x,Xt) = (k(x,xj))xj∈Xt
and Kt = (k(xj ,xk))xj ,xk∈Xt

[40] Williams and Rasmussen, see n. 7.
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Appendix

INSPIRE - Acquisition Function

φ
(i)
t : CNi → R

Many candidates: GP-UCB [41], KG [42], PI [43]

Expected Improvement [44]

φ
(i)
t (x) = E

f(i)(x)∼N
(
µ
(i)
t (x),

(
σ
(i)
t (x)

)2
) [(f (i)(x)− y∗t

)+]
=
(
µ
(i)
t (x)− y∗t

)
Φ(z(x)) + σ

(i)
t (x)ϕ(z(x)) (24)

with y∗t = maxj∈[1,t] yj , (x)
+
= max(0, x), z(x) =

(
µ
(i)
t (x)− y∗t

)
/σ

(i)
t (x),

Φ and ϕ the cdf and pdf of N (0, 1) respectively

We set x(i) = argmaxx∈CNi
φ
(i)
t (x)

[41] Srinivas et al., see n. 15.

[42] Shanti S Gupta and Klaus J Miescke. “Bayesian look ahead one-stage sampling allocations for selection of the best population”. In: Journal of
statistical planning and inference 54.2 (1996), pp. 229–244.

[43] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient global optimization of expensive black-box functions”. In: Journal of Global
optimization 13.4 (1998), 455–492.

[44] Mockus, see n. 8.
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Appendix

INSPIRE - Minimax Optimality

Objective to minimize: g(x) = |
∑n

i=1 f
(i)(x(i))− f(x)|

x(i) ∈ CNi is the prescription of AP i

Classical formulation of a minimax problem: infx supy g(x,y)

For INSPIRE, we derive B(x) ≥ g(x)

Non-uniform upper bound of g
Lowest upper bound given the assumed information about g

We minimize B(x) to find a promising consensus

Given the strong similarity with a minimax optimization task, we call
x̃ = argminx∈C B(x) a minimax optimum

A. Bardou PhD Thesis Defense September 7th, 2023 44 / 36



Appendix

INSPIRE - Computational Overhead
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Appendix

INSPIRE - Different Complexities

x+ ∈ C recommended by INSPIRE

Two random vectors (x1,x2) ∈ C2

Plot
(
a, b, f

(
ax1 + bx2 + x+

))
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INSPIRE - Alternatives

Single GP: Centralized version of INSPIRE

GPs w/o agg.: Decentralized version without consensus
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Appendix

DuMBO - Factor Graph

Recall that we assume f =
∑n

i=1 f
(i)

This can be represented by a factor graph

e.g,
f(x) = f1(x1, x3) + f2(x2) + f3(x2, x3) + f4(x1, x3)
For this decomposition, the MFS d̄ = 2

Each factor node i (i ∈ [1, n]) can communicate with
the variable nodes in Vi

e.g. V1 = {1, 3}
Each variable node j (j ∈ [1, d]) can communicate
with the factor nodes in Fj

e.g. F3 = {1, 3, 4}
Therefore, f(x) =

∑n
i=1 f

(i)(xVi
)

We want a decentralized algorithm that can be run on
this factor graph
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DuMBO - Inferring the Decomposition

The additive decomposition can be inferred by MCMC from data [45]

Acceptance probability: P (M′|M) = min
(
1, p(y|X,M′)g(M′|M)

p(y|X,M)g(M|M′)

)
Given M1, · · · ,Mk additive decompositions, we optimize

φt(x) =
1

k

k∑
i=1

φMi
t (x) (25)

[45] Gardner et al., see n. 23.
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Appendix

DuMBO - Maximizing φt

maximize

n∑
i=1

φ
(i)
t (x(i))

such that x
(i)
Vi∩Vj

= x
(j)
Vi∩Vj

,∀i, j ∈ [1, n]

(26)

with x(i) ∈ C(i)

Introducing a global consensus variable x̄ ∈ C,

maximize

n∑
i=1

φ
(i)
t (x(i))

such that x
(i)
Vi

= x̄Vi
,∀i ∈ [1, n]

(27)

Augmented Lagrangian relaxation Lη(x
(1), · · · ,x(n), x̄,λ) =

∑n
i=1 L

(i)
η with

L(i)
η (x(i),λ(i), x̄Vi

) = φ
(i)
t (x(i))−λ(i)⊤(x(i) − x̄Vi

)− η

2
||x(i) − x̄Vi

||22 (28)

with λ(i) the Lagrange multipliers for L(i)
η
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Appendix

DuMBO - ADMM

We use ADMM [46] to maximize Lη

Iterative method that successively finds, at iteration k,

x
(1)
k+1 = argmax

x(1)

L(1)
η (x(1), x̄k,λk)

...

x
(n)
k+1 = argmax

x(n)

L(n)
η (x(n), x̄k,λk)

x̄k+1 = argmax
x̄

Lη(x
(1)
k+1, · · · ,x

(n)
k+1, x̄,λk) (29)

λk+1 = argmax
λ

Lη(x
(1)
k+1, · · · ,x

(n)
k+1, x̄k+1,λ) (30)

Note that x
(1)
k+1, · · · ,x

(n)
k+1 can be found concurrently

Note that (29) and (30) have closed forms

[46] Gabay and Mercier, see n. 18.
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Appendix

DuMBO - Asymptotic Optimality

Piggybacking on the results of [47]

Theorem 1: the instantaneous regret of DEC-HBO (discrete domain) is

rt ≤ 2β
1
2
t

n∑
i=1

σ
(i)
t (xt) (31)

Note that this regret bound is larger than ours

Theorem 2: DEC-HBO is asymptotically optimal in a discrete domain

Theorem 3: DEC-HBO is asymptotically optimal in a continuous domain

Assumption. f is Lipschitz-continuous

[47] Hoang et al., see n. 14.
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Appendix

DuMBO - Other Experiments
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DuMBO - Wall-Clock Time
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