ENS DE LYON UNIVERSITE DE LYON

Online Learning for the Black-Box Optimization

of Wireless Networks
Public PhD Defense

September 7th, 2023

Presented by Anthony Bardou

Jury Members
President: Liva Ralaivola (AMU & Critéo)

Examiners: Patrick Loiseau (Inria & Ecole Polytechnique) Supervisor: Thomas Begin (UCBL)
Giovanni Neglia (Inria)
Claire Vernade (UTiibingen)



Introduction |~ What is a wireless network?

Wireless Network

() Enduser - Wireless
association
A Wireless node Radio range

m Performance metrics (e.g. users throughput) easy to describe
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Introduction |~ What is a wireless network?

Wireless Network

Exogenous factors
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Introduction What does it mean to optimize a wireless network?

Optimization of a Wireless Network

m The network has parameters and f : C — R an objective function
m Goal: tune the parameters to maximize the objective f

Exogenous factors
Temperature,
Other WNs,
Obstacles...
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A Wireless node Radio range
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Introduction | Problem addressed in this thesis

Online, Black-Box Optimization of a Wireless Network?

= Black-Box: the closed form of f is unknown (or does not exist)
u Only noisy-corrupted f-values are observable by query
m Online: the learning data is collected during the optimization process

Aquery e

Exogenous factors

The wireless Other WNs,
Obstacles,
network Temperature.

The model
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The Notion of Regret

B " = argmax . f(x)

Instantaneous regret at time ¢:

re = f(x") = f(w) (1)

= Cumulative regret at time ¢:

Ry=> 1 (2)

k=1
= Asymptotic optimality
R
lim — =0 ®3)
t—+oco ¢

m Given enough time, * will be the most queried configuration (by far!)
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Introduction | Problem addressed in this thesis

Example: Spatial Reuse Optimization in WLANs

= Maximize an objective function
in a WLAN (e.g. Wi-Fi network) T -
m Each @ is an access point (AP) -

= APs serve stations (STAs)

m Each AP i has two parameters
denoted () € (¥
m Transmission power (TX_PWR),
sensibility threshold (0BSS_PD)
= Dynamical update with IEEE
802.11ax amendment [1] (Wi-Fi
6)

m Spatial reuse optimization
® is hard
® must be addressed in
next-generation WLANSs

[1] “IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems - Local and Metropolitan Area
Networks—Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”.

A. Bardou PhD Thesis Defense September 7th, 2023 6/36



Outline

m Contribution 1: Multi-Armed Bandit Approaches for 802.11

Contribution 2: Decentralized Bayesian Optimization for 802.11

Contribution 4: Decentralized, No-Regret Bayesian Optimization of
High-Dimensional Functions

m Collaboration with Patrick Thiran, EPFL

= Conclusion
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MAB Solution

Contribution 1

Multi-Armed Bandit Approaches for 802.11
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MAB Solution = Method

Context

= WLAN with n APs, m STAs
m Each AP has two discrete parameters, with 20 values each
m |C| = 20°" configurations
m Can be reduced to |C| = 200™ by integrating an IEEE 802.11ax constraint

Assumption. The WLAN is equipped with a controller able to gather the
throughputs of the STAs

Assumption. The APs and the STAs do not move in space
m Mild assumption for stadiums, open-spaces and M2M networks

m f:C — R is an ad-hoc objective function maximized when there is no
starvation in the WLAN

m A STA is said in starvation when its throughput is lower than a given threshold

The problem is framed as a Multi-Armed Bandit (MAB)

m Each configuration @ is an arm, returning a reward f(x) + € when pulled
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MAB Solution = Method

Overview

m C is too large to explore all the arms in a reasonable amount of time
m To overcome this, we propose two algorithms:

m The sampler must explore the configurations space and gather configurations
that appear promising configurations in a reservoir

m The optimizer must identify the best configuration in the reservoir
(Thompson sampling [2])

Obtain the new

[ configuration <t the new

ﬂ onfigur ation

Transmit
Conflguratlons <—>{ Sampler }4—{ Optimizer C WLAN
Sampling reward

space ——=— Collect,

— T e e rewar,
Request a new d

configuration

[2] William R Thompson. “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples”.
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Building the Reservoir

m State-of-the-art: Uniform sampling in C
m Assumption (regularity).

dL > 0,V x; € C, ||z, —xj|[i =1 = [f(x;) — f(z;)| <L (4)
m Two proposed samplers

Gaussian Mixture Mixture of hyperspheres

=75 =70

=75 =70
OBSS_PD (dBm) OBSS_PD (dBm)
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MAB Solution = Results.

Evaluation

m Evaluation through simulation with ns-3 [3], 22 replications

m Evaluation on a real-world based scenario (selection)

Variable MCS, uplink/downlink traffic
10 APs, 50 STAs

s

[3] The ns3 Project. The Network Simulator ns-3. .
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MAB Solution = Results.

Evaluation

m Control strategies: DEFAULT
m SOTA strategies: WCNC’ 15 [4], JNCA’ 19 [5], GM+NGTS, HM+NGTS
m 75 ms per test, 120 seconds simulated = 1,600 iterations

Y] %0 g-.700 W‘/‘/‘—‘
Strategy  Average Regret _§25 =
Rt 8
520 S —¢ DEFAULT —+— GM+NGTS
DEFAULT 0.632 +£0.001 2 3 500 4~ WCNC'15 —&— HM+NGTS
WCNC’15  0.438 £0.001 S 5400 SELS
JNCA’19 0.399 £0.001 €19 : 2 2 66600000
GM+NGTS 0.472 £0.021 2 i \IzIECFI\/i\(lIJIi-I—S == Sw“gg *a 2300
5 '15 —A— 1| S
HM+NGTS 0.237 +0.011 e JNCA'19 o o
° 500 1000 1500 0 250 500 750 1000 1250 1500
Optimization step Optimization step

[4] M Shahwaiz Afaqui et al. “Evaluation of dynamic sensitivity control algorithm for IEEE 802.11 ax".
[5] Francesc Wilhelmi et al. “Collaborative spatial reuse in wireless networks via selfish multi-armed bandits”.
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MAB Solution | Conclusion

Discussion

= Pros

m Two solutions competitive against state-of-the-art strategies
= Robust evaluation (complex scenarios, credible number of APs)

m Cons

u No theoretical guarantees
m Many hyperparameters to set
m Centralized solution
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Decentralized BO for 802.11

Contribution 2

Decentralized Bayesian Optimization for 802.11
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Context

= WLAN with n APs, m STAs

m Each AP i has two continuous parameters, within C() = [-82, —62] x [1,21]
B C=CYx...xc™
m d=dimC =2n

m Assumption. The APs and the STAs do not move in space

m f:C — RT is built on the proportional fairness of the STAs' throughputs
T(z) = (Ti(z), -, Trm(x)) m
= Z log T} (x) (5)
i=1

® argmax o f(x) is a natural trade-off between

® a large cumulated throughput 1T (x)]]1
T ()17 [6]

m a large fairness index
& T (@) 13

[6] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. “A quantitative measure of fairness and discrimination”.
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Decentralized BO for 802.11 = Method

Decentralized Method

m Assumption. Each AP can only communicate with APs in its radio range

= N;: indices of reachable APs for AP i, including i itself
m S;: the STAs associated with AP 4

Surroundings of...
AP 1
AP 2
..AP 3
..AP 4
...AP 5

m Additive decomposition of f such as f(z) = Y1, f¥(x)

w fO(x) = 3, log T (2)?
w fO(x) = D ieN, ﬁ Zkesj log Ti () exploits the whole local information

A. Bardou PhD Thesis Defense September 7th, 2023
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Bayesian Optimization
= Assumption. Vi € [1,n], f(") is a Gaussian Process GP (0,k(") (x;, @) ))
Bz, €CN, = Hje/\/i cw

vz € Cn, [ (2) ~ N (0’ (U(()i)(m)f)

m Pioneering work [7] conditions the model on D,

= va Oy fO@ID N (o), (o (@))

m Acquisition function <pt :Cn, = R
= Expected Improvement [8]

" o (x) = f(i>(w)~N<u§i)(w),( (g ))z) [(f“)(w) —yf)q

= We set () = Arg MaXgec, . apg )( )

[7] Christopher K. 1. Williams and Carl Edward Rasmussen. “Gaussian Processes for Regression”.
[8] Jonas Mockus. “Application of Bayesian approach to numerical methods of global and stochastic optimization”.
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Decentralized BO for 802.11 = Method

Consensus Function

Surroundings of...
AP
AP 2
..AP3
..AP 4
..AP5

= Assumption. Vi € [1,n], f) is L;-Lipschitz continuous

m Theorem.
m Let P, = {x,(;)} v be the prescriptions received by AP j = [%] for its
1EN;

parameter k € [1,2n]
m Let Zj be the median of Py, weighted by the Lipschitz constants {Li}ie/\/j

= Then, the vector & = (Z1,- -+ ,Z2,) is minimax optimal
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Decentralized BO for 802.11 ~ Results

Evaluation

m Evaluation through simulation with ns-3, 22 replications
m Two topologies with variable MCS and uplink/downlink traffic

T1: Open spaces, Cisco San Francisco T2: Residential Building
10 APs, 50 STAs 14 APs, 56 STAs

P

e <

(]
o e

\‘A
J
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Decentralized BO for 802.11 ~ Results

Evaluation

m Control strategy: DEFAULT

m SOTA strategies: WCNC’ 15 [9], JNCA’ 19 [10], GM+NGTS, HM+NGTS, INSPIRE,
INSPIRE LIM

m 75 ms per test, 30 seconds of simulated time = 400 iterations

Average Regret R;/t

Solution T1 T2

DEFAULT 0.652 + 0.001 0.429 + 0.004
WCNC’ 15 0.470 &+ 0.001 0.327 + 0.005
JNCA’19 0.437 + 0.001 0.398 + 0.006
GM+NGTS 0.527 + 0.016 0.375 £ 0.006
HM+NGTS 0.305 + 0.006 0.379 £ 0.005
INSPIRE 0.193 £+ 0.005 0.294 + 0.006

INSPIRE_LIM 0.233 + 0.005 0.329 £ 0.005

[9] Afaqui et al., see n. 4.
[10] Wilhelmi et al., see n. 5.
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Decentralized BO for 802.11 = Results

Network Oriented Metrics

-
[y

—< DEFAULT —&— HM+NGTS 800

30 4 WCNC'15 —¥ INSPIRE a
~® NCA'19 —» INSPRELIM 2
g5 —+— GM+NGTS =700
il =
= 5
[ o
2 20 >0 £ 600 —< DEFAULT —&— HM+NGTS
I 3 ~9- WCNC'15 ¥ INSPIRE
515 £ 500 ~® JNCA'19 -+ INSPIRE_LIM
5 = —+— GM+NGTS
o T
@ 400
Ew kS
4 =l
5 ¥ E 300
o
0 200
0 100 200 300 400 0 100 200 300 400
Optimization step Optimization step
25 1000 . DEFAULT -~ HM+NGTS
a ~- WCNC'15 —¥— INSPIRE
@ S 900 —@ JNCA19 > INSPRELIM, ¥ ¥ v v
s = —— GM+NGTS >
=] 5 - - »”
B y
s 2 800
< 2 S == =4
@ 3
e £ 700
510 5
2 2 600
5 —<— DEFAULT —4— HM+NGTS ket
Z 5 4 WCNC'15 —¥— INSPIRE 2
—— JNCA'19  —»— INSPIRE_LIM 3 500
—*— GM+NGTS
0
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Decentralized BO for 802.11 = Conclusion

Discussion

m Pros

Excellent empirical performance

= Robust evaluation (complex scenarios, credible number of APs)
m Decentralized

m Theoretical guarantees (minimax optimal at each iteration)

m Cons
m Asymptotic optimality?
= Impact of rounding?
m High-dimensional factors in denser topologies?
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No-Regret High-Dimensional BO

Contribution 4

Decentralized, No-Regret Bayesian Optimization of High-Dimensional Functions
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No-Regret High-Dimensional BO ~ Context

BO in High-Dim. Input Spaces
m Recall that BO as defined by [11] involves
m Assumption. f:C CR? = R is GP(u, k)
m An acquisition function ¢; : C — R to discover promising queries

B X1 = argmaxgee @¢(T)

m Classical BO struggles with high-dimensional input spaces because of the
global optimization algorithms used to compute ;, = argmax ¢ ¥¢(x)

m Solution:
m Assumption. An additive decomposition for f, that is

@) =3 fO ) (6)
1=1
= with f@ : c® C RY” R being GP (;ﬁ“,k(")), Vi € [1,n]

= Maximum Factor Size (MFS): d = max;c(1 ) d*)

[11] Williams and Rasmussen, see n. 7.
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No-Regret High-Dimensional BO ~ Context

Decomposing BO Algorithms

Solution MFS Assumption Find arg max ¢,
ADD-GPUCB [12] d=1 Yes

QFF [13] d=1 Yes
DEC-HBO [14] d<3 Under assumptions
DuMBO (Ours) None Under assumptions

m We propose a Decentralized Message-passing Bayesian Optimization
algorithm (DuMBO)

m We demonstrate its asymptotic optimality
m We demonstrate its competitiveness on synthetic and real-world problems

[12] Kirthevasan Kandasamy, Jeff Schneider, and Barnabds Péczos. “High dimensional Bayesian optimisation and bandits via additive models”.
[13] Mojmir Mutny and Andreas Krause. “Efficient high dimensional bayesian optimization with additivity and quadrature fourier features”
[14] Trong Nghia Hoang et al. “Decentralized high-dimensional Bayesian optimization with factor graphs”.
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No-Regret High-Dimensional BO = Improving the Decentralized GP-UCB

Decentralized GP-UCB )
m The GP-UCB acquisition function is ¢¢(x) = ui(x) + B2 o¢(x) [15]

2
m o(x \/ZZ 1 $V1)> cannot be computed in a decentralized fashion

m Previous works [16] propose to apply GP-UCB to each factor £ individually
m The optimized acquisition function is therefore

=3 o (@v,)
=1
) 0
=3 u(@y,) + B0 (@y,)
=1

1 n i
#) 46 3ot (wv) (7)
m In (7), ou(x) is replaced by the overestimation >, at(l) (zv,)

m The decentralized algorithms explore too much!

[15] Niranjan Srinivas et al. “Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting”.

[16] Kandasamy, Schneider, and Péczos, see n. 12; Hoang et al., see n. 14.
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No-Regret High-Dimensional BO = Improving the Decentralized GP-UCB

Reducing the Gap
m The variance term (a,gi))2 can be decomposed [17] into

= An epistemic term: uncertainty due to the lack of observed data 4
= An aleatoric term v observational noise, natural lower bound of (U,Sl))2

m Assumption. (aﬁ”)Q is bounded from above by vg)

m Then, the optimal linear overestimation of o;(x) on [v_,v4] (with
oo =" oD and vy =3 0l is

ot az D (y,))? (8)

m with a the single positive real root of the quartic

w3t 4lud]™ uf] " u)"t
=2 [5L_a3+[ jv_a_u;_ o

[17] Eyke Hilllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods”.
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No-Regret High-Dimensional BO = Improving the Decentralized GP-UCB

Proposed Acquisition Function

2
= Assumption. v, < (,/ +23>°0 12:] ! (J))

m Theorem. Vx € C, Vt € N, we have

7(2) < g+ Dot @) < 3ol av)
m Therefore, an algorithm maximizing
(@) =Y ot (@v,)
i=1
n
=Y i (@v) + B a0 (@) (10)

m should have a lower regret than current state-of-the-art BO algorithms
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No-Regret High-Dimensional BO DuMBO

Maximizing ¢,

m We use the Alternating Directions Method of Multipliers (ADMM) [18] to
maximize ¢, in a decentralized fashion

m Excellent performance of ADMM on nonconvex problems [19], [20]
m [21] extends the global maximization guarantee of ADMM to restricted
prox-regular functions

u Definition (restricted prox-regularity). For a lower semi-continuous function f, let
M € RT, f:R™ - RU{+oco} and 9f the set of general subgradients of f. Define the
exclusion set Sp; = {@ € dom(f) : ||d|| > M for all d € 8f(x)}. f is called restricted
prox-regular if, for any M > 0 and bounded set T' C dom( f), there exists v > 0 such that

1)+ Sl —yl* = fw) + d(y — =), (11)

Ve € T\ Sy, y €T, dedf(z), ||d]| <M.

[18] Daniel Gabay and Bertrand Mercier. “A dual algorithm for the solution of nonlinear variational problems via finite element approximation” .

[19] Athanasios P Liavas and Nicholas D Sidiropoulos. “Parallel algorithms for constrained tensor factorization via alternating direction method of
multipliers”.
[20] Rongjie Lai and Stanley Osher. “A splitting method for ortt

lity constrained pi

[21] Yu Wang, Wotao Yin, and Jinshan Zeng. “Global convergence of ADMM in nonconvex nonsmooth optimization”.
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No-Regret High-Dimensional BO  Asymptotic Optimality

No-Regret Performance

m Assumption. ¢, is restricted prox-regular

m Theorem. Let r; = f(z*) — f(x!) denote the instantaneous regret of
DuMBO. Let 6 € (0,1) and 8; = 2log (‘D'“ ¢ ) Then Va € D,Vt € N we

have
1 n (%) t 2 1
re < 2087 az (O't (x )) + 1 (12)
i=1
with probability at least 1 — 4.

m The regret bound (12) is lower than a no-regret algorithm, DEC-HBO [22]

m By piggybacking on the results of DEC-HBO, DuMBO is shown
asymptotically optimal, that is

[22] Hoang et al., see n. 14.
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No-Regret High-Dimensional BO  Experiments

Numerical Experiments

m DuMBO: does not have access to the natural additive decomposition of f
= Must infer it with [23]

m ADD-DuMBO: has access to the natural additive decomposition of f when it
exists

m Comparison with two decomposing BO algorithms: ADD-GPUCB [24] and
DEC-HBO [25]

= Recall that they must infer a decomposition when the MFS d > 3

m Comparison with two solutions that make other assumptions

= SAASBO [26] and TuRBO [27]
m Recall that they do not offer no-regret guarantees

[23] Jacob Gardner et al. “Discovering and exploiting additive structure for Bayesian optimization”.

[24] Kandasamy, Schneider, and Péczos, see n. 12.
[25] Hoang et al., see n. 14.

[26] David Eriksson and Martin Jankowiak. “High-dimensional Bayesian optimization with sparse axis-aligned subspaces’” .

[27] David Eriksson et al. “Scalable global optimization via local bayesian optimization” .
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No-Regret High-Dimensional BO  Experiments

Experiments (Selection)

Powell (d=24, MFS=4) WLAN (d=12, MFS=6)
—< SAASBO  —*— DEC-HBO -106 —%- SAASBO  —*— DEC-HBO
- TuRBO —A— DUmBO - TuRBO —A— DUmBO
~@- ADD-GPUCB —¥- ADD-DUmBO | E ~108 —@- ADD-GPUCB —¥- ADD-DUMBO
3 -110
o
< 104 ¢ -112
g E\ 114
g 2
¢ -116
o
10° 5 -118
-120
0 20 40 60 80 100 0 20 40 60 80 160
Optimization step t Optimization step t
Rover (d=60)
30
°
g25
3
o
)
2201 ¢ SAASBO  —k— DEC-HBO
S ~&- TURBO —A— DUmBO
9 —@- ADD-GPUCB
Z15
@
)
o
% 10
5

0 20 40 60 80 100
Optimization step t
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No-Regret High-Dimensional BO  Conclusion

Discussion

= Pros

Excellent empirical performance

m Robust evaluation on multiple benchmarks

m Decentralized

m Theoretical guarantees (asymptotic optimality)

= Cons

m Restricted prox-regularity of the acquisition function?
= Wall-clock time larger than SAASBO [28] or TuRBO [29]

[28] Eriksson and Jankowiak, see n. 26.
[29] Eriksson et al., see n. 27.
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Conclusion

Conclusion

m We proposed online methods for the optimization of a black-box objective
function within a wireless network, that are
m both centralized and decentralized
m competitive / better than state-of-the-art solutions
m able to deal with high-dimensional problems
= asymptotically optimal (DuMBO)

m Future works
m More technical applications
m Dynamic problems
m Multi-objective problems
m Student-t processes instead of GPs?
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Appendix

A Fundamental Problem: The Exploration-Exploitation
Dilemma
m Exploration: querying policy that maximizes the probability to be surprised

m Exploitation: querying policy that maximizes the probability to obtain high
f-values according to actual beliefs

2.0 -

1.5

1.0
>
0.5 ! e
H Ground Truth &  Pure Exploration
./ e Observations % Pure Exploitation
001 | Prediction ¢ ucB

Uncertainty
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Online Approaches for Spatial Reuse Optimization in Wi-Fi

Proposed Tuning of Tuning of Dynamic Traffic Simulator APs /
solutions OBSS_PD  TX_PWR MCS Up/Down channels

VTC'04 [30] Up Self-made  8/1
Infocom'20 [31] Up/Down Self-made 100/11
WCNC'15 [32] Up Self-made 100/3
WCNC'21 [33] Down ns-3 6/1

Globecom'20 [34] Up/Down ns-3 3/1
ADHOC'19 [35] Down  Self-made  8/1
JNCA’19 [36] Down  Self-made 8/1

ANENENENEN
N NN
(\

m Solutions evaluated on vanilla scenarios with virtually no theoretical guarantees

[30] Youngsoo Kim, Jeonggyun Yu, and Sunghyun Choi. "SP-TPC: a self-protective energy efficient communication strategy for IEEE 802.11 WLANSs".
[31] Shuwei Qiu et al. “Joint access point placement and power-channel-resource-unit assignment for 802.11 ax-based dense WiFi with QoS
requirements".

[32] Afaqui et al., see n. 4.

[33] Hyunjoong Lee, Hyung-Sin Kim, and Saewoong Bahk. “LSR: link-aware spatial reuse in IEEE 802.11 ax WLANSs".

[34] Elif Ak and Berk Canberk. “FSC: Two-scale Al-driven fair sensitivity control for 802.11 ax networks”.

[35] Wilhelmi et al., see n. 5.

[36] Francesc Wilhelmi et al. “Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs".
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Finding the Best Arm in the Reservoir

m Our optimizer builds upon [37], which assumes f(x;) + € ~ N (u;,1)
m A Gaussian conjugate prior is placed on 6 = p; and updated with data
m We assume f(x;) + € ~ N (i, 02)
m We place a Normal-Gamma conjugate prior on 8 = (ui,ai_Q) with parameters
(u?,/\?,a?,ﬂ?) and update formulas

n A+ ny

= 14
7 N (14)
AP =X 4 n, (15)
a?:a?—l—g, (16)

n 0 1 )‘0 (y /'Lz)

L, jaalicAnn s rEn b 1
B 61+2<ns+ N n (17)

m To identify the best arm, we rely on Thompson sampling, which samples an arm k
with probability

Pk :/@]I]E[y‘k,o]:maxkreAE[y‘k170]p(0|p)d0 (18)

[37] Wilhelmi et al., see n. 5.
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Evaluation - T1

= Control strategies: DEFAULT, e-GREEDY (e ox 1)
m SOTA strategies: UNIF+GTS [38], GM+GTS, GM+NGTS
m 50 ms per test, 120 seconds simulated = 2,400 iterations

9001 . DEFAULT —+— GM+GTS

~4~ £GREEDY —4~ GM+NGTS
8001 —e— UNIF+GTS ——

700! o= 2t

101

Strategy  Average Regret
R/t

DEFAULT 0.376 £0.008
e-GREEDY 0.458 £0.011
UNIF+GTS 0.773 £0.002

AL

Number of starvations
o
Aggregate Throughput (Mbps)

a | ©4004
+ . | =% DEFAULT —+— GM+GTS
GM+GTS 0.354 +£0.007 ~—&— &-GREEDY —4— GM+NGTS 300"
GM+NGTS 0.313 +0.007 —e— UNIF+GTS
0 0 500 1000 1500 2000 0 500 1000 1500 2000
Optimization step Optimization step

[38] Wilhelmi et al., see n. 5.
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INSPIRE - Surrogate Modelling: Gaussian Process

m A Gaussian Process (GP) is a collection of random variables {Y ()}
indexed by a set C

m Any finite set {Y(21), -+ ,Y (2»)} has a joint multivariate Gaussian

xcC

distribution
m A GP is fully specified by
n(zx) = E[Y (z)] (19)
k(@,2') = E (Y (2) - u(@)) (Y (@) - u(a)] (20)

= Assumption. Vi € [1,n], f) is a Gaussian Process GP (0, (z;, )y ))

mzy, €Cn = [jen, cw
= k£ is a Matérn covariance function [39] with its hyperparameter v = 3/2

) —x _ VBllz—='||
k(l)(m,w/) _ s? <1 + \/§||ﬂ3p x ||2> e o 2 (21)

m with hyperparameters (s?,pi) e R} xRY

[39] Marc G Genton. “Classes of kernels for machine learning: a statistics perspective”.
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Bayesian Optimization: Inference Formulas
m Pioneering work [40]
= Assumption. Vi € [1,n], f(V) is a Gaussian Process GP (0, k() (z, )
mzy, €Cn, = HjeNi ch
. . 2
w YV € Cn,, fO(z) ~ N <0, (a(()l)(w)> >

m Given Dy = (X, y¢), with the ¢ x d matrix X; = (‘DJ)J‘Te[l,t] and the
t-dimensional vector y; = (yj);re[l’t], fO(x)| Dy ~ N (ugi) (x), (O't(i) (:1:))2)
with

(@) = Kl X0) Ky (22)
(o1 (:1:))2 = k(z,2) — k(z, X,)K; 'k(z, X)) (23)

= with k(xz, X;) = (k(a:,a:j))mjext and K, = (k(wj,wk))mj@kext

[40] Williams and Rasmussen, see n. 7.
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INSPIRE - Acquisition Function

= gpgi) Cn, = R

m Many candidates: GP-UCB [41], KG [42], PI [43]

m Expected Improvement [44]

(i) () — @Oy x\ T
P@ = E (n @) (a7 @)") [(f (@) ~3i) }

= (1" @) - 57 ) @(2(2) + oi” (@) (=(=) (24)

= with yf = maxjeqg vy, (@) = max(0,2), 2(@) = (i (@) -7 ) /o (@),
® and ¢ the cdf and pdf of A/ (0, 1) respectively

u We set () = arg maxgec, ga,(fi)(:v)

[41] Srinivas et al., see n. 15.

[42] Shanti S Gupta and Klaus J Miescke. “Bayesian look ahead one-stage sampling allocations for selection of the best population” .
[43] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient global optimization of expensive black-box functions”.

[44] Mockus, see n. 8.
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INSPIRE - Minimax Optimality

= Objective to minimize: g(x) = | Y7, fO(x®) — f(x)|
e Cy;; is the prescription of AP ¢

m Classical formulation of a minimax problem: infy sup,, g(z,y)

m For INSPIRE, we derive B(x) > g(x)

u Non-uniform upper bound of g
m Lowest upper bound given the assumed information about g

= We minimize B(z) to find a promising consensus

m Given the strong similarity with a minimax optimization task, we call
Z = arg mingce B(x) a minimax optimum

A. Bardou PhD Thesis Defense September 7th, 2023 44 /36



Appendix

INSPIRE - Computational Overhead

;‘:" / —<— DEFAULT —4&— HM+NGTS % / —— DEFAULT —&— HM+NGTS
o 1073 ~- WCNC'15 —¥%— INSPIRE 3 1073 ._ ~&- WCNC'1I5 —¥%— INSPIRE
£ / —®— JNCA'19  —»— INSPIRE_LIM £ —®— JNCA'19  —»— INSPIRE_LIM
0 10-4 > —*— GM+NGTS B 10-4 —*— GM+NGTS
o s = * o—eo—9—=% O

107° 10-5

10-6 A/‘/‘—A———A—A—A—H——A—A——A—‘—‘ 106 AA 4 A A A A A A A Ak A A4

0 100 200 300 400 0 100 200 300 400
Optimization step Optimization step
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Appendix

INSPIRE - Different Complexities

m T € C recommended by INSPIRE

= Two random vectors (z,x2) € C?
m Plot (a, b, f (aa:l + bz + w+))

0.90 -0.90
;  0.85
0.80
0.75
0.70
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INSPIRE - Alternatives

m Single GP: Centralized version of INSPIRE

m GPs w/o agg.: Decentralized version without consensus

1.0 1.0
—<— DEFAULT —®— GPs w/o agg. —<— DEFAULT —@— GPs w/o agg.
0.9 ~&- Single GP —— INSPIRE 0.9 ~- Single GP —*— INSPIRE
0.8
3 g %
— 07 —
o Zo.7
<
go.s §0'6
<04 <05
0.3 0.4

o
)

o

w

0 100 200 300 400 0 100 200 300 400
Optimization step Optimization step
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Appendix

DuMBO - Factor Graph

= Recall that we assume f =" f(
m This can be represented by a factor graph

= e.g,
f(@) = fi(z1,23) + fa(x2) + fs(m2,23) + fa(w1,235)
m For this decomposition, the MFS d = 2

m Each factor node i (i € [1,n]) can communicate with
the variable nodes in V;

meg Vi ={1,3}
m Each variable node j (5 €
with the factor nodes in F;
meg F3={1,3,4}

m Therefore, f(z) =", fO(xy,)

[1,d]) can communicate

m We want a decentralized algorithm that can be run on
this factor graph
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DuMBO - Inferring the Decomposition

m The additive decomposition can be inferred by MCMC from data [45]

M=[1,3][2] [4]

split or merge?

L

pick 1 sub-partition: pick 2 sub-partitions:
3 M3 2
13 @ [ e
perform split perform merge
M =[Ii2IE] Ap-1132 11341 [1.3]

[ @& [24

T i (y| X M )g(M'|M)
m Acceptance probability: P (M’|M) = min (1, ]Z)(ZIX,M);](MIM/) )

m Given My, .-, M} additive decompositions, we optimize

1 k
pr(x) = z Z% () (25)

[45] Gardner et al., see n. 23.
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DuMBO - Maximizing ¢

n
‘mi (8) ( a(4)
maximize g o (')
i=1 (26)

such that xg/)m, = mv v, VisJ € [1,n]
m with () € ¢

m Introducing a global consensus variable Z € C,

.. ~ (i) (%)
maximize o (')
; (27)

such that azg)) =&y,,Vi € [1,n]

= Augmented Lagrangian relaxation £, (2™, ... (™ 2 X) =31 Lff) with

i i i) A i i i i) = n i) =
£ @D A0, @y,) = o (@) = AOT (@ —@y,) — J||la? — @[5 (28)

= with A() the Lagrange multipliers for C%i)
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DuMBO - ADMM

m We use ADMM [46] to maximize L,
m lterative method that successively finds, at iteration k,

zc;clll = arg max E%l)(az(l), T, k)

x(1)

1’5:21 = argmax [ZS,")(:B("), Ti, A\r)

;1:(")
Tpr1 = argznax[ln(ac,(ﬁl, e ,ac,(;jr)l,:i,)\k) (29)
xr
Apr1 = arg;naxﬁ,,(ac,(ﬁl, e ,:c,gjr)l,i:kﬂ,/\) (30)
= Note that a:,(:ll, . ,a:,(:gl can be found concurrently

= Note that (29) and (30) have closed forms

[46] Gabay and Mercier, see n. 18.
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DuMBO - Asymptotic Optimality

Piggybacking on the results of [47]

m Theorem 1: the instantaneous regret of DEC-HBO (discrete domain) is

re < 282 Za(” (31)
m Note that this regret bound is larger than ours

m Theorem 2: DEC-HBO is asymptotically optimal in a discrete domain

m Theorem 3. DEC-HBO is asymptotically optimal in a continuous domain
m Assumption. f is Lipschitz-continuous

[47] Hoang et al., see n. 14.
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DuMBO - Other Experiments

) Six-Hump Camel (d=2, MFS=2) Hartmann (d=6, MFS=6)
10°
—<- SAASBO  —%— DEC-HBO —< SAASBO —k— DEC-HBO
~@- TuRBO —A— DUmBO 3.0{ 4 & TuRBO —A— DUmBO
10 —®- ADD-GPUCB —¥~ ADD-DUMBO —@- ADD-GPUCB —¥- ADD-DUmBO
2.5
£ 100 &
5 © 20
g g
o —
107! “9s
102 1.0
0.5
0 20 40 60 80 100 0 20 40 60 80 100
Optimization step t Optimization step t
Rastrigin (d=100, MFS=5) Cosmological Constants (d=9)
50
1600 ¢ SAASBO —A—~ DUmBO —4 SAASBO  —&— DEC-HBO
~®- TURBO —¥- ADD-DUmMBO &~ TURBO —A— DUmBO
1500 T —@- ADD-GPUCB
s 40
1400 3
o
& 1300 ¢ 30
s H
2 1200
g § 20
< 1100 °
2
1000 s
210
900 <
800 0
0 20 40 60 80 100 0 20 40 60 80 100
Optimization step t Optimization step t
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DuMBO - Wall-Clock Time

Powell (d=24, MFS=4) WLAN (d=12, MFS=6)
—<— SAASBO ~»— ES-DUMBO -106 —4- SAASBO  —p— ES-DUMBO
TuRBO —A— DUmMBO @~ TuURBO —A— DUmMBO
~@- ADD-GPUCB —lii- ES-ADD-DUmBO | 5 ~108 —@- ADD-GPUCB —fii- ES-ADD-DUMBO
—&— DEC-HBO —¥— ADD-DUmMBO g —%— DEC-HBO  —¥- ADD-DUmMBO
3 -110
& 1044 g -112
§ 3 -114
Y -116
o
10° g -118
-120
0 500 1000 1500 2000 0 200 400 600 800
Wall-clock Time (s) Wall-clock Time (s)
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