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Abstract

Bayesian Optimization (BO) is typically used to optimize an unknown function f
that is noisy and costly to evaluate, by exploiting an acquisition function that must
be maximized at each optimization step. Although provably asymptotically opti-
mal BO algorithms are efficient at optimizing low-dimensional functions, scaling
them to high-dimensional spaces remains an open research problem, often tackled
by assuming an additive structure for f . However, such algorithms introduce
additional restrictive assumptions on the additive structure that reduce their appli-
cability domain. In this paper, we relax the restrictive assumptions on the additive
structure of f , at the expense of weakening the maximization guarantees of the
acquisition function, and we address the over-exploration problem for decentralized
BO algorithms. To these ends, we propose DumBO, an asymptotically optimal
decentralized BO algorithm that achieves very competitive performance against
state-of-the-art BO algorithms, especially when the additive structure of f does not
exist or comprises high-dimensional factors.

1 Introduction

Many real-world applications involve the optimization of an unknown objective function f that is
noisy and costly to evaluate. Examples of such tasks include hyper parameters tuning in deep neural
networks [1], robotics [2], networking [3] and computational biology [4]. In such applications, f can
be seen as a black box that can only be discovered by successive queries. This prevents the use of
traditional first order approaches to optimize f .

Bayesian Optimization (BO) has become a highly effective framework for black-box optimization.
Typically, a BO algorithm tackles this problem by modeling f as a Gaussian process (GP) and by
leveraging this model to query f at specific inputs. The challenge of querying f is to trade off
exploration (i.e. to query an input that improves the quality of the GP regression of f ) for exploitation
(i.e. to query an input that is thought to be the maximal argument of f ). To achieve this trade-off at
time t, a BO algorithm maximizes an acquisition function φt(x), built by leveraging the information
provided by the GP model, to select a query xt.

Although BO has shown its efficiency at optimizing black-box functions, so far it has mostly
found success with low dimensional input spaces [5]. However real-world applications, such as
computer vision, robotics or networking, often involve a high-dimensional objective function f .
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Scaling classical BO algorithms to such input spaces remains a great challenge as the cost of finding
argmaxφt grows exponentially with the input space dimension d. A way to circumvent that issue
is to cap the complexity of the maximization by assuming an additive decomposition of f [6–8]
with a low Maximum Factor Size (MFS), denoted d̄ and corresponding to the maximum number of
dimensions for a factor of the decomposition. Unfortunately, assuming an additive decomposition
with low MFS may lead to the optimization of a coarse approximation of f . Since the low MFS
assumption is only needed to ensure that the global maximum of φt is found within a reasonable
amount of time, a methodological question arises: is it better (i) to have a guarantee of reaching the
global maximum on an acquisition function built from a simple (and often inexact) decomposition of
f , or (ii) to use an acquisition function built from a more complex but exact decomposition of f by
giving up on the guarantee of reaching the global maximum?

Case (i) has been extensively studied [6–8], but it seems that only [7] has taken a few steps in
the direction of case (ii). This article embraces case (ii) and demonstrates that it is possible to
relax the low-MFS assumptions that limit the applicability domain of asymptotically optimal BO
algorithms. To illustrate case (ii), we propose DuMBO, a decentralized, message-passing, provably
asymptotically optimal BO algorithm able to infer a complex additive decomposition of f without
any assumption regarding its MFS. Additionally, we provide a more efficient way to approximate
the well-known GP-UCB acquisition function [9] in a decentralized context. Finally, we evaluate
the pros and cons of case (ii) by comparing DuMBO with several state-of-the-art solutions on both
synthetic and real-world problems wherein the noisy objective function f cannot be decomposed into
low-dimensional factors.

2 Background

2.1 State of the Art

Given a black-box, costly to evaluate objective function f : D ⊂ Rd → R, the goal of a BO algorithm
is to find argmaxx f(x) using as few queries as possible. To quantify the quality of the optimization,
one can consider the immediate regret rt = f(x∗) − f(xt) (note that x∗ = argmaxx f(x)) and
attempt to minimize the cumulative regret Rt =

∑t
i=1 ri. A BO algorithm is said to be asymptotically

optimal if limt→+∞ Rt/t = 0, which implies that the BO algorithm will asymptotically reach x∗

and hence guarantees no-regret performance.

A BO algorithm typically uses a GP to infer a posterior distribution for the value of f(x) at any point
x ∈ D and selects, at each time step t, a query xt. The BO algorithm bases its querying policy on
the maximization of an acquisition function that quantifies the benefits of observing f(x) in terms of
exploration and exploitation. Common acquisition functions include probability of improvement [10],
expected improvement [11] and upper confidence bound [12]. The latter leads to an asymptotically
optimal application to GPs, with GP-UCB [9], defined as

φt(x) = µt(x) + β
1
2
t σt(x). (1)

It involves an exploitation term µt(x), which is the posterior mean of the GP at input x, and an
exploration term σt(x), which is the posterior standard deviation of the GP at input x. Finally,
the scalar β1/2

t handles the exploration-exploitation trade-off in order to guarantee the asymptotic
optimality of GP-UCB with high probability.

As stated before, scaling BO algorithms to high-dimensional functions is challenging because of
the exponential complexity of the global optimization algorithms used to maximize the acquisition
function φt. To tackle this problem, BO algorithms generally fall into one of these two categories
(with the exception of TuRBO [13], which uses trust regions to maximize f ).

Embedding BO algorithms assume that only a few dimensions significantly impact f and project
the high-dimensional space of f into a low-dimensional one where the optimization is actually
performed. REMBO [14] and ALEBO [15] use random matrices to embed the high-dimensional
space while SAASBO [16] uses sparse GPs defined on subspaces. Other approaches [17, 18] are
based, respectively, on Variational Auto-Encoders and on manifold GPs to learn an embedding.
Finally, there exists approaches that select some dimensions of the input space to project onto. Such
recent methods include Dropout [19] and MCTS-VS [20], based on Monte-Carlo Tree Search.
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Table 1: Comparison of decomposing state-of-the-art BO algorithms with DuMBO on relevant
criteria. Here, n is the number of factors in the decomposition, d the number of dimensions of f , d̄
the MFS of the decomposition, t the optimization step, ζ the desired accuracy when maximizing φt

and NA a constant defined in Appendix D. Nm is a constant defined in [7].

Solution Complexity MFS Assumption Find argmaxφt

ADD-GPUCB O
(
t3 + nt2 + n2ζ−1

)
d̄ = 1 Yes

QFF O
(
(ζ−1t3/2(log t)d̄)d̄

)
d̄ = 1 Yes

DEC-HBO O
(
Nmζ−d̄n(t3 + n)

)
d̄ ≤ 3 If the decomposition is sparse

DuMBO O
(
d̄NAnt

3ζ−1
)

None If φt is restricted prox-regular

Decomposing BO algorithms assume an additive structure for f and optimize the factors of the
induced decomposition. Classical approaches such as MES [21], ADD-GPUCB [6] or QFF [8]
assume a decomposition with a MFS equal to 1 and orthogonal domains. More recent approaches like
DEC-HBO [7] are able to optimize decompositions with larger MFS and shared input components.
Still, the MFS of the decomposition must be low to avoid a prohibitive computational complexity.
Note that, under some assumptions on f , these approaches are provably asymptotically optimal and a
subset of them, namely ADD-GPUCB [6] and DEC-HBO [7], can be used in a decentralized context.

2.2 DuMBO (Decentralized Message-passing Bayesian Optimization algorithm)

In this article, we propose DuMBO, a decomposing algorithm that relaxes the low MFS constraint on
the assumed additive decomposition of f . Table 1 gathers the main differences between DuMBO and
state-of-the-art decomposing algorithms. Note that ADD-GPUCB and QFF require the simplest
form of additive decompositions (d̄ = 1). As a consequence, when optimizing a complex objective
function f , they need to approximate it with a decomposition with MFS d̄ = 1. In return, they are
systematically able, at each time step t, to query argmaxφt. Observe that DEC-HBO tolerates more
complex decompositions (d̄ = 3), but is no longer guaranteed to find the global maximum of φt

(because it uses a variant of the max-sum algorithm [22] that requires f to have a sparse additive
decomposition to converge). Overall, DuMBO is the only algorithm that exploits weaker guarantees
on the maximization of φt to lower its computational complexity. This allows DuMBO to handle
decompositions with an arbitrary MFS without the need to approximate them with a simpler one.

The remaining of this article is devoted to formulating the BO problem (Section 3), presenting
DuMBO and its early-stopped version (Section 4), providing theoretical guarantees (Section 5) and
comparing them with state-of-the-art BO algorithms (Section 6).

3 Problem Formulation and First Results

In this section, we introduce the core assumptions about the black-box objective function f : D → R
to obtain an additive decomposition (Section 3.1). Next, we exploit these assumptions to derive
inference formulas (Section 3.2) and to adapt GP-UCB to a decentralized context (Section 3.3).

3.1 Core Assumptions

In order to optimize f in a decentralized fashion, we make several assumptions.
Assumption 3.1. The unknown objective function f can be decomposed into a sum of factor functions(
f (i)
)
i∈[1,n]

, with domains
(
D(i)

)
i∈[1,n]

, such that D = ∪n
i=1D

(i) and

f =

n∑
i=1

f (i). (2)

Any decomposition, including (2), can be represented by a factor graph where each factor and
variable node denote, respectively, one of the n factors of the decomposition and one of the d input
components of f . An edge exists between a factor node i and a variable node j if and only if f (i) uses
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xj as an input component. We use Vi, 1 ≤ i ≤ n, and Fj , 1 ≤ j ≤ d, to denote respectively the set
of variable nodes connected to factor node i and the set of factor nodes connected to variable node j.

To make predictions about the factor functions without any prior knowledge, we need a model that
maps the previously collected inputs with their noisy outputs. Denoting xVi

= (xj)j∈Vi
, let us

introduce the following assumption.

Assumption 3.2. Factor functions f (i) are independent GP
(
µ
(i)
0 , k(i)

(
xVi ,x

′
Vi

))
, with prior mean

µ
(i)
0 = 0 and covariance function k(i).

Since f is a sum of independent GPs, Assumption 3.2 implies that f is also GP (µ0, k(x,x
′)) with

prior mean µ0 = 0 and covariance function k(x,x′) =
∑n

i=1 k
(i)
(
xVi

,x′
Vi

)
.

3.2 Inference Formulas

For any x ∈ D and given the previous t input queries (x1, · · · ,xt), the vector
(f(x), f(x1), · · · , f(xt)) is Gaussian. Given the t-dimensional vector of noisy outputs y =
(y1, · · · , yt)⊤, with yi = f(x) + ϵ and ϵ a centered Gaussian variable, the posterior distribution of
the factor f (i)(x) is also Gaussian. Since f can be decomposed, the posterior mean µ

(i)
t+1(xVi

) and
variance (σ

(i)
t+1(xVi

))2 of the factor f (i) at time t+ 1 can be expressed with the posterior means and
covariance functions of the factor functions involved in decomposition (2).

Proposition 3.3. Let µ(i)
t+1(xVi

) and (σ
(i)
t+1(xVi

))2 be the posterior mean and variance of f (i) at
input xVi

. Then, for the decomposition (2),

µ
(i)
t+1(xVi

) = k(i)⊤
xVi

K−1y (3)

(σ
(i)
t+1(xVi

))2 = k(i)(xVi
,xVi

)− k(i)⊤
xVi

K−1k(i)
xVi

(4)

with t× 1 vectors k(i)
xVi

= (k(i)(xVi
,xj

Vi
))j∈[1,t] and t× t matrices K = (k(xj

Vi
,xk

Vi
))j,k∈[1,t].

For the sake of generality, Proposition 3.3 only requires an additive decomposition of f . Appendix A
describes how such a decomposition can be inferred from data, using the method proposed by [23],
similarly to Appendix B of [7]. Note that Proposition 3.3 does not assume a corresponding additive
decomposition of the observed outputs in y. However, note that, in a significant portion of real-world
applications (e.g. network throughput maximization [24], energy consumption minimization [25]
or UAVs-related applications [26]), a natural output decomposition is observable. As demonstrated
by [27], having access to a decomposed output can only improve the predictive performance of the
GP surrogate model. Therefore, we derive the inference formulas when the output decomposition is
known in Appendix B. Also, we explore the impact of having access to the decomposed output of f
in Section 6.

3.3 Proposed Acquisition Function

Having defined a surrogate model for f , we can now turn to finding an optimal policy for querying
the objective function. In this section, we exploit the decomposition of f to build an acquisition
function for our BO algorithm that approximates GP-UCB in a decentralized context. Proofs for all
the presented results can be found in Appendix C.

Recall that GP-UCB is defined by (1) as the sum of an exploitation term µt(x) and an exploration
term σt(x) weighted by some scalar β

1/2
t . Finding an additive decomposition for GP-UCB is

hard because σt(x) cannot be expressed as a sum. To circumvent this caveat, [6] proposed to
apply GP-UCB to each factor of the additive decomposition of f , with φ

(i)
t = µ

(i)
t + β

1/2
t σ

(i)
t .

Then, they proved that their algorithm ADD-GPUCB offers no-regret performance by considering∑n
i=1 φ

(i)
t = µt + β

1/2
t

∑n
i=1 σ

(i)
t as an acquisition function. Although the exploitation term µt is

preserved, the exploration term is now overweighted since
∑n

i=1 σ
(i)
t ≥

√∑n
i=1

(
σ
(i)
t

)2
= σt. To

reach better empirical performance, one could look for a tighter additive upper bound of σ2
t . This is
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the purpose of this section. We start by decomposing the variance of the ith factor function (σ
(i)
t (x))2

into two terms.

Epistemic vs. aleatoric uncertainty. The variance (σ
(i)
t (x))2 of the random variable f (i)(x) is

composed of two fundamentally different terms. The epistemic uncertainty refers to the uncertainty
caused by having an undersampled dataset with not enough data points to accurately estimate the
value of f (i)(x). In contrast, the aleatoric uncertainty can intuitively be seen as the observational
noise of f (i)(x) due, for instance, to a poor measurement quality. For more details, refer to [28].

Let v(i)− ≥ 0 be the aleatoric uncertainty of the factor function f (i), which can be seen as a lower
bound of the posterior variance of f (i), that is ∀x ∈ D(i),∀t ∈ N, v(i)− ≤ (σ

(i)
t (x))2. A better

approximation of the exploration term can be proposed if the posterior variance of the GP is assumed
to be bounded.
Assumption 3.4. ∀t ∈ N, the posterior variance of the objective function f , σ2

t (x) =∑n
i=1

(
σ
(i)
t (xVi

)
)2

satisfies σ2
t (x) ≤ v+, with v+ =

(√
v− + 2δ−

)2
, v− =

∑n
i=1 v

(i)
− and

δ2− =
∑n

i=1

∑n
j=1
j ̸=i

√
v
(i)
− v

(j)
− .

Note that the restrictiveness of Assumption 3.4 fades as the number n of factors grows.

Example. Consider the case where all the n factor functions f (i) have the same aleatoric uncertainty
v0. We have v− = nv0, δ2− = n(n − 1)v0 and v+ = nv0(1 + 2

√
n− 1)2. Thus, the ratio

v+/v− = (1 + 2
√
n− 1)2 increases as n grows, which suggests that Assumption 3.4 is more easily

verified when n is large. Note that v+/v− can be quite large for reasonable values of n. Considering
a decomposition with n = 6, v+/v− ≈ 30. In this particular context where we consider an additive
decomposition of f composed of 6 factors with the same aleatoric uncertainty v0, Assumption 3.4
holds for any objective function whose posterior variance is less than 30 times its aleatoric uncertainty.

Under Assumption 3.4, we propose to bound from above the exploration term with the following
proposition.
Proposition 3.5. Under Assumption 3.4,

a

n∑
i=1

σ
(i)
t

2
+

1

4a
(5)

is the best linear overestimation of the exploration term σt (in the least squares sense), where a is the
single positive real root of the quartic polynomial

P (a) =
2
[
u3
]v+
v−

3
a4 −

4
[
u

5
2

]v+
v−

5
a3 +

[
u

3
2

]v+
v−

3
a−

[u]
v+
v−

8
(6)

and [h(u)]
v+
v−

= h(v+)− h(v−).

We show that (5) is a tighter upper bound of σt(x) than the one proposed in [6].
Theorem 3.6. Let Assumptions 3.1, 3.2, 3.4 hold. Then the following inequality holds for all x ∈ D

a

n∑
i=1

(
σ
(i)
t (xVi

)
)2

+
1

4a
≤

n∑
i=1

σ
(i)
t (xVi

). (7)

Therefore, we propose an acquisition function φt =
∑n

i=1 φ
(i)
t corresponding to the described

additive decomposition (2) with

φ
(i)
t (xVi

) = µ
(i)
t (xVi

) + aβ
1
2
t

(
σ
(i)
t (xVi

)
)2

(8)

4 Proposed Algorithm

In this section, we describe DuMBO, a BO algorithm that exploits the results from Section 3 to find
argmaxx∈D

∑n
i=1 φ

(i)
t (xVi

), which comes down to argmaxx∈D µt(x) + β
1/2
t

(
aσ2

t (x) + 1/4a
)

since both expressions differ only by a constant term. We also provide an early-stopped version of
DuMBO and discuss the weaker guarantees achieved in this case.
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4.1 DuMBO

Optimizing φt(x) =
∑n

i=1 φ
(i)
t (xVi) while ensuring the compatibility between shared input compo-

nents amounts to solving the following constrained optimization problem:

max

n∑
i=1

φ
(i)
t

(
x(i)

)
such that x(i)

Vi∩Vj
= x

(j)
Vi∩Vj

,∀i, j ∈ [1, n] (9)

with x(1), · · · ,x(n) inputs (with dimension indices respectively listed in V1, · · · ,Vn) of the factor
functions φ(1)

t , · · · , φ(n)
t .

To simplify the expression of the equality constraints (9), we introduce a global consensus variable
x̄ ∈ D and we reformulate the optimization problem as

max

n∑
i=1

φ
(i)
t

(
x(i)

)
such that x(i) = x̄Vi ,∀i ∈ [1, n] . (10)

We now turn the problem (10) into an unconstrained optimization problem by considering its
augmented Lagrangian Lη(x

(1), · · · ,x(n), x̄,λ):

Lη =

n∑
i=1

φ
(i)
t (x(i))− λ(i)⊤(x(i) − x̄Vi

)− η

2
||x(i) − x̄Vi

||22 (11)

with λ
(i)
k a column vector of dual variables with |Vi| components and a hyperparameter η > 0.

To maximize (11), we consider the Alternating Direction Method of Multipliers (ADMM), proposed
by [29]. We now describe how we apply ADMM to our problem and present some relevant well-
known results. For further details, please refer to [30].

ADMM is an iterative method that proposes, at iteration k, to solve sequentially the problems

x
(1)
k+1 = argmax

x(1)

L(x(1), · · · ,x(n)
k , x̄k,λk)

...

x
(n)
k+1 = argmax

x(n)

L(x(1)
k+1, · · · ,x

(n−1)
k+1 ,x(n), x̄k,λk)

x̄k+1 = argmax
x̄

L(x(1)
k+1, · · · ,x

(n)
k+1, x̄,λk) (12)

λk+1 = argmax
λ

L(x(1)
k+1, · · · ,x

(n)
k+1, x̄k+1,λ). (13)

Note that x(1)
k+1, · · · ,x

(n)
k+1 can be found concurrently, by gradient ascent (e.g. with ADAM [31]) of

L(i)
η = φ

(i)
t (x(i))− λ(i)⊤(x(i) − x̄Vi

)− η

2
||x(i) − x̄Vi ||22. (14)

If ∀i ∈ [1, n],
∑

j∈Fi
λ
(j)
0,i = 0, it is known (see [30]) that the closed-forms for (12) and (13) are

x̄k+1 =

 1

|Fi|
∑
j∈Fi

x
(j)
k+1,i


i∈[1,d]

(15)

λk+1 =
(
λ
(i)
k + η

(
x
(i)
k+1 − x̄k+1,Vi

))
i∈[1,n]

. (16)
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These results describe a fully decentralized message-passing algorithm, called DuMBO, that can
run on the factor graph of f . A discussion about its time complexity is given in Appendix D. Since
DuMBO relies on ADMM to maximize φt =

∑n
i=1 φ

(i)
t , let us briefly discuss its maximization

guarantees. It is well known that ADMM converges towards the global maximum of a convex φt.
ADMM has also demonstrated very good performance at optimizing non-convex functions [32–34].
This has been explained by recent works such as [35], which extends the global maximization
guarantee of ADMM to the class of restricted prox-regular functions, which includes some non-
convex, non-smooth functions.

4.2 Early-stopping

Although DuMBO has a competitive time complexity (see Table 1), we now discuss how to properly
early-stop it and still get (weaker) guarantees on the maximization of φt before ADMM converges.
This can be of critical importance for some real-world applications. Note that the proofs for the
results in this section can be found in Appendix E. We start with the following assumption.

Assumption 4.1. The covariance functions k(i) from Assumption 3.2 are Lipschitz continuous, with
Lipschitz constant L

(
k(i)
)
= maxx,x′,y∈D(i)

|k(i)(x,x′)−k(i)(y,x′)|
||x−y||2 .

Assumption 4.1 holds for a large class of covariance functions, such as Matérn or the squared
exponential. For such covariance functions, we have the following result.

Proposition 4.2. Let Assumptions 3.1, 3.2, 3.4 and 4.1 hold. Then, φ(i)
t is Lipschitz continuous, with

Lipschitz constant
L
(
φ
(i)
t

)
= tL

(
k(i)
)
ρ
(
K−1

)
M

(i)
t (17)

with M
(i)
t = max

(
|y+t − 2aβ

1/2
t v

(i)
− |, |y−t − 2aβ

1/2
t v

(i)
+ |
)

, y+t = maxk∈[1,t] yk, y−t =

mink∈[1,t] yk and ρ
(
K−1

)
the spectral radius of K−1.

Thanks to the Lipchitz continuity of the acquisition function, we have the following result.

Theorem 4.3. ∀i ∈ [1, n], let x(i)
k+1 = argmaxx L(i)

η (x), with L(i)
η defined in (14). Then

x̃ =

 1∑
i∈Fj

L(φ
(i)
t )

∑
i∈Fj

L(φ
(i)
t )x

(j)
k+1,i


j∈[1,d]

(18)

is optimal in the minimax sense. Furthermore, if any L(φ
(j)
t ) is unknown, x̄k+1 as defined in (15) is

an approximation of the minimax optimum.

Intuitively, Theorem 4.3 proves that an upper bound for |
∑n

i=1 φ
(i)
t (x∗) −

∑n
i=1 φ

(i)
t (x̃)| exists

(with x∗ = argmaxx∈D φt(x)), and that (18) minimizes this upper bound. In addition, if not
enough information or computing capacity is available to compute L(φ

(j)
t ), using (15) provides a

good approximation of the minimax optimal.

5 Asymptotic Optimality

In this section, we provide a regret bound for DuMBO and we establish its asymptotic optimality
under the assumptions given above. We start by providing an upper bound on its immediate regret
rt = f(x∗)− f(xt) for a finite, discrete domain D. Its proof can be found in Appendix F.
Theorem 5.1. Let rt = f(x∗)− f(xt) denote the immediate regret of DuMBO. Let δ ∈ (0, 1) and

βt = 2 log
(

|D|π2t2

6δ

)
. Then ∀x ∈ D,∀t ∈ N we have

rt ≤ 2β
1
2
t

(
a

n∑
i=1

(
σ
(i)
t (xt)

)2
+

1

4a

)
(19)

with probability at least 1− δ.
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Table 2: Comparison of four state-of-the-art solutions against two different versions of DuMBO on
synthetic and real-world problems. The reported metrics correspond to the minimal regret attained
for the synthetic functions, and to the average negative reward for the real-world problems. The best
performance metric among all the strategies is written in bold text, and the best among the strategies
that do not have access to the additive decomposition is underlined. Decomposing BO algorithms
can be identified with the prefix "(+)".

Algorithm
Synthetic Functions Real-World Problems

(d-d̄) (d-d̄)

SHC Hartmann Powell Rastrigin Cosmo WLAN Rover
Unknown Add. Dec. (2-2) (6-6) (24-4) (100-5) (9-) (12-6) (60-)

SAASBO 0.013 0.89 2,544 1,073 16.55 -116.40 10.82
TuRBO 0.322 1.89 711 1,109 5.82 -118.39 6.06
(+) ADD-GPUCB 0.102 1.29 10,258 N/A 7.46 -119.05 26.57
(+) DEC-HBO 0.005 1.47 9,025 N/A 14.90 -116.58 10.07
(+) DuMBO 0.029 0.76 542 1,010 5.86 -118.57 6.38
Known Add. Dec.

(+) ADD-DuMBO 0.102 0.72 542 822 N/A -121.06 N/A

We demonstrate the asymptotic optimality of DuMBO by piggybacking on the asymptotic optimal-
ity of DEC-HBO [7]. This is a decomposing BO algorithm with an immediate regret bound of
2β

1/2
t

∑n
i=1 σ

(i)
t (xt) (see Theorem 1 in [7]). Interestingly, Theorem 3.6 directly implies that the im-

mediate regret bound (19) is lower than the immediate regret bound of DEC-HBO. As a consequence,
the immediate regret of DuMBO is bounded above by the regret bound of DEC-HBO. This allows us
to rely on proofs in [7] to establish some properties of DuMBO. In particular, DEC-HBO is provably
asymptotically optimal whether the domain D is discrete or continuous (see Theorems 2 and 3 in [7]).
These results directly apply to DuMBO and imply the following corollary.

Corollary 5.2. Let δ ∈ (0, 1) and Rt =
∑t

k=1 rk denote the cumulative regret of DuMBO. Then,
with probability at least 1− δ, there exists a monotonically increasing sequence of {βt}t such that
βt ∈ O(log t) and limt→+∞ Rt/t = 0.

6 Performance Experiments

In this section, we detail the experiments carried out to evaluate the empirical performance of DuMBO.
Our benchmark comprises four synthetic functions and three real-world experiments. We consider
two state-of-the-art decomposing BO algorithms: ADD-GPUCB [6] that assumes that d̄ = 1, and
DEC-HBO [7] that assumes that d̄ ≤ 3. We also consider two state-of-the-art BO algorithms that do
not assume an additive decomposition of the objective function: TuRBO [13] and SAASBO [16].
We compare these solutions with two versions of the proposed algorithm: DuMBO that must
systematically infer the additive decomposition of f (see Appendix A) and ADD-DuMBO that,
conversely, can observe the decomposition if it exists (see Appendix B). Note that the performance
evaluation for the early-stopping version of DuMBO (see Section 4.2) is given in Appendix I.

Since BO is often used in the optimization of expensive black-box functions, we are interested in the
ability of each algorithm at obtaining good performance in a small number of iterations. Therefore,
in every experiment, all the BO algorithms are given 110 iterations to optimize f . Each experiment is
repeated 5 independent times. Table 2 gathers the averaged results that were obtained.

6.1 Optimizing Synthetic Functions

In this section, we compare the six BO algorithms mentioned above using four synthetic functions:
the 2d Six-Hump Camel (SHC), the 6d Hartmann, the 24d Powell and the 100d Rastrigin. A detailed
description of the synthetic functions, as well as the complete set of figures depicting the performance
of the BO algorithms can be found in Appendix G.
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(a) (b) (c)

Figure 1: Performance achieved by the BO algorithms listed in Section 6 for (a) the 24d Powell
synthetic function, (b) the optimization of the Shannon capacity in a WLAN and (c) the trajectory
planning of a rover. The shaded areas indicate the standard error intervals.

Figure 1(a) reports the minimal regrets of the solutions on the Powell function, where d = 24
and the MFS d̄ = 4. Observe that the two decomposing algorithms, ADD-GPUCB and DEC-
HBO, obtain the worst minimal regrets. This is because they infer an additive decomposition of
f based on the assumption that d̄ ≤ 3 when actually d̄ = 4. Conversely, DuMBO, which does
not make any restrictive assumption on d̄, manages to quickly achieve a low regret by inferring
an efficient additive decomposition of f . Observe that DuMBO also outperforms SAASBO and
TuRBO. Finally, Figure 1(a) shows that, when given access to the true additive decomposition of f ,
ADD-DuMBO achieves its lowest regret in a lower number of iterations. Note that, among all the BO
algorithms tested in the experiments, the two versions of DuMBO are the only ones able to properly
infer and/or exploit the additive decomposition of f given its large MFS.

6.2 Solving Real-World Problems

We consider three real-world problems: (a) fine-tuning some cosmological constants to maximize the
likelihood of observed astronomical data, (b) controlling the power of devices in a Wireless Local
Area Network (WLAN) to maximize its Shannon capacity [36] and (c) the trajectory planning of a
rover. The problems, along with a complete set of figures depicting the performance of the tested BO
algorithms, are discussed in details in Appendix H.

Figures 1(b) and 1(c) depict the performance of the BO algorithms on problems (b) and (c), where
d = 12 and 60 respectively. Figure 1(b) shows that DuMBO obtains competitive performance
against other state-of-the-art BO algorithms. On this problem as well, the performance of ADD-
DuMBO demonstrate that having access, and being able to handle additive decompositions with large
MFS, is a significant advantage. As a matter of fact, it allows to outperform other BO algorithms
unable to exploit this additional information. Figure 1(c) exhibits patterns similar to Figure 1(a):
ADD-GPUCB and DEC-HBO fail to infer an adequate additive decomposition because of the
restrictive MFS assumption. Conversely, DuMBO, which does not make such an assumption on the
size of the MFS, demonstrates its competitiveness by achieving the best performance along with
TuRBO. Note that ADD-DuMBO is not evaluated on problem (c) since its objective function cannot
be decomposed.

7 Conclusion

We investigated the benefits of relaxing the restrictive assumptions of low-MFS additive decomposi-
tion that limit the applicability domain of state-of-the-art decomposing BO algorithms. As illustrated
by Table 1, we chose to optimize the acquisition function with algorithms that scale well with the
number of dimensions. This enables us to infer a complex additive decomposition of the objective
function f , or to directly exploit it when it is available. To illustrate the effectiveness of such design
choices, we proposed DuMBO, an asymptotically optimal decentralized BO algorithm that optimizes
f using a tighter decentralized approximation of GP-UCB that requires less exploration than the
previously proposed approximations. As demonstrated by Sections 5 and 6, DuMBO is a competitive
alternative to state-of-the-art BO algorithms, able to optimize complex objective functions in a
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small number of iterations. Compared to other decomposing algorithms, such as ADD-GPUCB and
DEC-HBO, DuMBO constitutes a significant improvement, particularly when the decomposition of
f has a large MFS with numerous factors or does not exist.

This brings evidence that a more complex model with weaker guarantees on the maximization of
the acquisition function φt can often represent a better option than a simpler model with stronger
guarantees on the maximization of φt. For future work, we plan to extend DuMBO to batch
mode [37, 38] and to apply it to suitable technological contexts such as networks [24], UAVs [26] or
within a robots team [39].
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A Inference of the Additive Decomposition

Our decentralized algorithm requires an additive decomposition of the objective function f , as
specified in Assumption 3.1 and exploited in Proposition 3.3. If the decomposition is known, it
can be directly specified to DuMBO. If the decomposition is unknown, it can be inferred from the
data [23, 40]. In this appendix, we briefly discuss how we exploit the approach introduced by [23].

As in [7], let us associate each candidate additive decomposition A with the kernel of an additive
GP [41]. Given k candidates A1, · · · ,Ak, we reformulate the acquisition function φt as a weighted
average with respect to the posterior of each candidate given the dataset S = {(xi, yi)}i∈[1,t]

composed of the selected input queries and their observed noisy outputs, that is

φt(x) =

k∑
i=1

p(Ai|S)φAi
t (x) (20)

=

k∑
i=1

p(Ai|S)
|Ai|∑
j=1

φ
(j)
t (xVj ) (21)

≈ 1

k

k∑
i=1

|Ai|∑
j=1

φ
(j)
t (xVj ), (22)

with φAi
t our proposed acquisition function given the additive decomposition Ai, φ

(j)
t given by (8),

(21) following from (20) since the additive decomposition Ai also provides an additive decomposition
of our proposed acquisition function, and (22) following from (21) as demonstrated by [23].

As for the candidates A1, · · · ,Ak, they are sampled by Monte-Carlo Markov Chain (MCMC)
with the Metropolis-Hastings algorithm [42], starting from the fully dependent decomposition
A0 = {{1, · · · , d}} at t = 0. When the decomposition is unknown, at each time step t, k promising
decompositions are sampled by MCMC starting from the last sampled decomposition at time step
t− 1, and (22) is maximized by our decentralized algorithm to find a promising input x to query.

B Inference Formulas with Decomposed Output

The decentralized algorithm DuMBO requires an additive decomposition of the objective function
f , however we do not assume that the corresponding decomposition of the output is observable.
Nevertheless, as demonstrated by [27], having access to such a decomposed output improves the
regression capabilities of the surrogate GP model, mostly by reducing the variance of its predictions.
In this appendix, we derive the counterparts of the posterior mean (3) and the posterior variance (4)
when the output decomposition of f is observable.

Observing the output decomposition of f means that f is now a function Rd → Rn, with n the
number of factors in its additive decomposition. At a time t, a BO algorithm has no longer access to
a t-dimensional output vector y, but to a t× n matrix Y . Note that y and Y are linked through the
relation Y 1 = y, with 1 the n-dimensional all-1 vector.

Having access to the matrix Y allows to train n different GPs instead of a single one with an
additive kernel [41], so that the ith GP

(
0, k(i)

(
xVi

,x′
Vi

))
serves as a surrogate model only for

the ith factor of the decomposition of f . To condition the ith GP, we consider the data set Si ={(
xj
Vi
, Yj,i

)}
j∈[1,t]

. Given Si, the expressions of the posterior mean µ
(i)
t+1 and the posterior variance(

σ
(i)
t+1

)2
are simple instances of the conditioned Gaussian distribution formulas, where

µ
(i)
t+1(x) = k(i)⊤

xVi
K−1

(i) Y:i, (23)(
σ
(i)
t+1(x)

)2
= k(i) (xVi ,xVi)− k(i)⊤

xVi
K−1

(i) k
(i)
xVi

, (24)

with Y:i the ith column of Y , t × 1 vectors k
(i)
xVi

= (k(i)(xVi
,xj

Vi
))j∈[1,t] and t × t matrices

K(i) = (k(i)(xj
Vi
,xk

Vi
))j,k∈[1,t].
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Note that (23) and (24) mainly differ from (3) and (4) by their ability to exploit the inverse of the
Gram matrix built only from the ith covariance function k(i), and of course, the outputs of the ith
factor of the decomposition Y:i.

C Proposed Acquisition Function

In this appendix, we provide the proofs for the approximation of the exploration term in the GP-UCB
acquisition function as well as the acquisition function φt proposed in the paper. We start by proving
the following lemma.
Lemma C.1. The best linear overestimation of

√
x (in the least-squares sense) is given by (5), where

a is one of the positive roots of the quartic polynomial (6).

Proof. We want a linear approximation ax+ b that consistently overestimates
√
x over the interval

[v−, v+]. Since
√
x is concave, the overestimation is ensured if ax + b −

√
x = 0 has at most a

single solution in R+. This can be achieved by adjusting the b parameter so that the polynomial
Q(x) = ax2 − x+ b has a single root. The discriminant of Q is 1− 4ab, so ∀a > 0, b = 1

4a ensures
the overestimation of

√
x.

The linear approximation ax + 1
4a must also be optimal in the least squares sense. Therefore, we

must find

a∗ = argmin
a∈R+

∫ v+

v−

(√
u−

(
au+

1

4a

))2

du

= argmin
a∈R+

[
u3
]v+

v−

3
a2 −

4
[
u

5
2

]v+
v−

5
a+

3
[
u2
]v+
v−

4
−

[
u

3
2

]v+
v−

3a
+

[u]
v+
v−

16a2
. (25)

Differentiating (25) with respect to a and multiplying by a3 to turn the expression into a polynomial,
we get the desired quartic

P (a) =
2
[
u3
]v+
v−

3
a4 −

4
[
u

5
2

]v+
v−

5
a3 +

[
u

3
2

]v+
v−

3
a−

[u]
v+
v−

8
.

Therefore, a must be one of the positive roots of P . Since ax+ 1/4a consistently overestimates
√
x,

P has at least one positive root by construction.

With Lemma C.1, we can prove Proposition 3.5.

Proof. We need to prove that the quartic (6) has a single positive root, which is also the solution
of (25). The derivative P ′ of P has, by construction, the same sign as the second derivative of the
expression in (25) and reads

P ′(a) =
8
[
u3
]v+
v−

3
a3 −

12
[
u

5
2

]v+
v−

5
a2 +

[
u

3
2

]v+
v−

3
. (26)

The discriminant of (26) can be shown to be always non-positive, yielding that P ′ has a single real
root. Furthermore, it is easy to show that (i) lima→−∞ P ′(a) = −∞ and (ii) lima→0 P

′(a) > 0.
Therefore the intermediate value theorem yields that the single real root of P ′ belongs to R−. As
a consequence, ∀a ∈ R+, P ′(a) > 0. Therefore, we can conclude that the positive root of P is a
minimum.

Furthermore, since ∀a ∈ R+, P ′(a) > 0, P is increasing and hence cannot have more than one root
in R+. Note that P (0) < 0 and lima→+∞ P (a) = +∞, hence P has a unique positive root in R+

by the intermediate value theorem. As shown by Lemma C.1, this root is the minimizer in (25) and
the optimal value for a in the approximation (5).

We can now prove Theorem 3.6.
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Proof. Let

S =

{
x : x ∈

[√
v
(1)
− ,

√
v
(1)
+

]
× · · · ×

[√
v
(n)
− ,

√
v
(n)
+

]
, v− ≤ ||x||22 ≤ v+

}
.

We need to prove that ∀x ∈ S, a||x||22 + 1/4a ≤ ||x||1. This is equivalent to finding a so that
−a2||x||22 + a||x||1 − 1/4 ≥ 0. As a matter of fact, if it exists a fixed a that satisfies the inequality
∀x ∈ S, it is the one computed by the Proposition 3.5, since the approximation is the optimal linear
overestimation of ||x||2.

We know that −a2||x||22 + a||x||1 − 1/4 is positive between its roots, which are

a1(x) =
||x||1 −

√
||x||21 − ||x||22

2||x||22

a2(x) =
||x||1 +

√
||x||21 − ||x||22

2||x||22
.

In order to ensure the existence of a satisfying the equation for all the elements of S, we need to
make sure that

max
x∈S

a1(x) ≤ min
x∈S

a2(x). (27)

To ease the maximization of a1(x), let us consider maxx∈S maxy∈[v−,||x||21−δ2−]
||x||1−

√
||x||21−y

2y ,
with δ2− = ||x||21 − ||x||22 =

∑n
i=1

∑n
j=1
j ̸=i

xixj . A trivial study of the variations of the expression

shows that

max
y∈[v−,||x||21−δ2−]

||x||1 −
√
||x||21 − y

2y
=

||x||1 − δ−
2(||x||21 − δ2−)

=
1

2(||x||1 + δ−)

Therefore, maxx∈S
1

2(||x||1+δ−) ≤
1

2(
√
v−+δ−) and δ2− =

∑n
i=1

∑n
j=1
j ̸=i

√
v
(i)
− v

(j)
− .

Similarly, we study the variation of ||x||1+
√

||x||21−y

2y for y ∈ [v−, ||x||21 − δ2+]. It is trivial to show
that

min
y∈[v−,||x||21−δ2+]

||x||1 +
√
||x||21 − y

2y
=

||x||1 + δ+
2(||x||21 − δ2+)

=
1

2(||x||1 − δ+)

Therefore, minx∈S
1

2(||x||1−δ+) ≥
1

2(
√
v+−δ+) , with δ+ ≥ δ−. We can now rewrite our criterion (27)

as
√
v− + δ− ≥ √

v+ − δ+, and we replace δ+ by δ− for the sake of simplicity. This leads to the
desired criterion expressed only with the variance bounds

√
v+ ≤ √

v− + 2δ− (28)

Therefore, whenever (28) holds, a||x||22 + 1
4a ≤ ||x||1, which is the desired result.

D Time Complexity of DuMBO

In this short section, we provide a time complexity analysis for DuMBO. The analysis assumes that a
gradient ascent performs O

(
ζ−1

)
steps for a desired accuracy ζ [43] and ADMM converges in at

most NA steps. We also denote by d(i) the factor size of the ith factor in the decomposition, used
by the local acquisition function φ

(i)
t . Note that, within the factor graph of φt, n factor nodes and

d variable nodes work concurrently to run ADMM in a decentralized fashion. We provide the time
complexities for the two types of nodes in this appendix (note that the communication costs between
factor nodes and variable nodes have been neglected for the clarity of the analysis).
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Factor node. For a factor node i, it is known that, at iteration t, the time complexity of the inference
with a GP is O

(
t3d(i)

)
, where t denotes the number of previous observations. Thus, the time

complexity of evaluating (14) is O
(
t3d(i)

)
. Since the evaluation is required O

(
ζ−1

)
times by the

gradient ascent, the time complexity of finding x
(i)
k+1 is O

(
ζ−1t3d

(i)
m

)
. A factor node also needs to

compute λ
(i)
k+1, which is O

(
d(i)
)
. Since the factor node is called at least once and at most NA times

for ADMM to converge, the time complexity of a factor node is O
(
d(i)ζ−1t3NA

)
.

Variable node. A variable node j is simply in charge of collecting messages from |Fj | factor nodes,
and to aggregate them into x̄k+1,j by averaging. Its time complexity is therefore O (|Fj |).

E Early-stopping guarantee

This appendix contains the proofs of Proposition 4.2 and Theorem 4.3. Let us start by proving
Proposition 4.2.

Proof. We want to show that φ(i)
t = µ

(i)
t +aβ

1
2
t σ

(i)
t

2
is Lipschitz continuous. This is true if ||∇φ

(i)
t ||2

is bounded. Replacing µ
(i)
t and σ

(i)
t

2
by their expressions (3) and (4), and differentiating with respect

to x shows that we need to bound

||∇φ
(i)
t ||2 = ||∇k(i)⊤

x K−1
(
y − 2aβ

1
2
t k

(i)
x

)
||2

≤ ||∇k(i)⊤
x ||2||K−1||2||y − 2aβ

1
2
t k

(i)
x ||2 (29)

Let us upper bound properly all the terms in (29). By Assumption 3.4, we know that ∀j ∈
[1, t], v

(i)
− ≤ k(i)(x,xj) ≤ v

(i)
+ . Similarly, y−t ≤ yj ≤ y+t , with y−t = minj∈[1,t] yj and

y+t = maxj∈[1,t] yj . Therefore, denoting M
(i)
t = max

(
|y+t − 2aβ

1
2
t v

(i)
− |, |y−t − 2aβ

1
2
t v

(i)
+ |
)

, we

have ||y − 2aβ
1
2
t k

(i)
x ||2 ≤

√
tM

(i)
t . Moreover, by the Raleigh–Ritz theorem, it is known that the

spectral norm of a symmetric positive semi-definite matrix coincides with its spectral radius (i.e., its
largest eigenvalue). Therefore, ||K−1||2 = ρ

(
K−1

)
. Finally, we upper bound ||∇k

(i)⊤
x ||2 using the

definition of the spectral norm

||∇k(i)⊤
x ||2 = sup

z∈Rt

||∇k
(i)⊤
x z||2
||z||2

≤ sup
z∈Rt

∑t
j=1 ||∇k(i)(x,xj)||2|zj |

1√
t

∑t
j=1 |zj |

≤ sup
z∈Rt

√
tL
(
k(i)
)∑t

j=1 |zj |∑t
j=1 |zj |

(30)

=
√
tL
(
k(i)
)

where (30) follows from k(i) being Lipschitz continuous with Lipschitz constant L
(
k(i)
)

according
to Assumption 4.1.

Combining all these upper bounds, we have an upper bound for the gradient of φ(i)
t

||∇φ
(i)
t ||2 ≤ tL

(
k(i)
)
ρ
(
K−1

)
M

(i)
t (31)

with M
(i)
t = max

(
|y+i,t − 2aβ

1
2
t v

(i)
− |, |y−i,t − 2aβ

1
2
t v

(i)
+ |
)

, which is the desired result.

We now prove Theoreom 4.3, which claims that a solution from an early-stopped version of DuMBO is
still optimal in a weaker sense.
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Proof. Denoting x∗ = argmaxx∈D
∑n

i=1 φ
(i)
t (xVi

) and having
{
x
(i)
k+1

}
i∈[1,n]

, let us try to find a

closed form for the upper bound of G = |
∑n

i=1 φ
(i)
t (x∗

Vi
) −

∑n
i=1 φ

(i)
t (x̃Vi

)|, before building x̃

that minimizes this upper bound. Since Proposition 4.2 holds, each φ
(i)
t is Lipschitz and we have

G ≤
n∑

i=1

|φ(i)
t (x∗

Vi
)− φ

(i)
t (x̃Vi

)|

≤
n∑

i=1

L(φ
(i)
t )||x∗

Vi
− x̃Vi

||2

≤
n∑

i=1

L(φ
(i)
t )
(
||x∗

Vi
− x

(i)
k+1||2 + ||x(i)

k+1 − x̃Vi ||2
)
. (32)

where the last inequality (32) follows from the triangle inequality. Since x
(i)
k+1 = argmaxx L(i)

η ,∑n
i=1 L(φ

(i)
t )||x∗

Vi
− x

(i)
k+1||2 will get increasingly smaller as ADMM iterates, provided that φ(i)

t
are restricted proxy-regular (as required by [35]). From (32), we see that x̃ must satisfy x̃ =

argminx
∑n

i=1 L(φ
(i)
t )||x(i)

k+1 − xVi
||2 to minimize the upper bound. This is equivalent to finding

argminx Ψ(x) =
∑n

i=1 L(φ
(i)
t )||x(i)

k+1 − xVi ||22. Developing this expression, we have

Ψ(x̃) =

nξ∑
i=1

∑
j∈Vi

L(φ
(i)
t )
(
x
(i)
k+1,j − x̃j

)2
. (33)

Differentiating (33) with respect to x̃j , we get

∂Ψ

∂x̃j
= 2

∑
i∈Fj

L(φ
(i)
t )
(
x̃j − x

(i)
k+1,j

)
.

Solving ∂Ψ/∂x̃j = 0 is straightforward with the Hessian H(Ψ)(x̃) positive definite, and leads to the
minimum

x̃ =

 1∑
j∈Fi

L(φ
(j)
t )

∑
j∈Fi

L(φ
(j)
t )x

(j)
k+1,i


i∈[1,d]

(34)

which is the desired result. Note that if L(φ(j)
t ) cannot be computed explicitly in (34), we can upper

bound L(φ
(j)
t ) by maxj∈[1,n] L(φ

(j)
t ) which then cancels out in the numerator and denominator

of (34) to become

x̃ =

 1

|Fi|
∑
j∈Fi

x
(j)
k+1,i


i∈[1,d]

. (35)

Therefore, (35) is a decent approximation of the minimax optimal. Note that, as stated in the theorem,
this approximation is exactly x̄k+1 as defined in (15).

F Immediate Regret Bound

In this section, we discuss the asymptotic optimality of DuMBO and provide the proof for Theorem 5.1.
We start by proving the following inequality linking f(x) with the posterior mean and variance of f .

Lemma F.1. Pick δ ∈ (0, 1) and let βt = 2 log
(

|D|π2t2

6δ

)
. Then, with probability at least 1− δ,

|f(x)− µt(x)| ≤ β
1
2
t

(
aσ2

t (x) +
1

4a

)
(36)
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for all x ∈ D and t ∈ N, µt(x) and σ2
t (x) defined through our proposed decomposition in

Proposition 3.3.

Proof. For all x ∈ D and t ∈ N, we have f(x) ∼ N
(
µt(x), σ

2
t (x)

)
. Defining st(x) =

f(x)−µt(x)
σt(x)

,
we know that st(x) ∼ N (0, 1). Therefore we have successively that

Pr
(
|st(x)| ≤ β

1
2
t

)
≥ 1− e−

βt
2

Pr
(
|f(x)− µt(x)| ≤ β

1
2
t σt(x)

)
≥ 1− e−

βt
2

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2

t (x) +
1

4a

))
≥ 1− e−

βt
2 (37)

where the last inequality (37) follows from
√
x ≤ ax+ 1

4a (see Proposition 3.5). The inequality (37)
holds for one single pair (t,x). Applying the union bound for all pairs in N × D, we have ∀t ∈
N,∀x ∈ D

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2

t (x) +
1

4a

))
≥ 1− |D|

+∞∑
t=1

e−
βt
2 . (38)

Pick δ ∈ (0, 1) and let βt = 2 log
(

|D|π2t2

6δ

)
. Then,

|D|
+∞∑
t=1

e−
βt
2 = |D|

+∞∑
t=1

e
− log

(
|D|π2t2

6δ

)

=
6δ

π2

+∞∑
t=1

1

t2

= δ.

Therefore, (38) becomes

Pr

(
|f(x)− µt(x)| ≤ β

1
2
t

(
aσ2

t (x) +
1

4a

))
≥ 1− δ (39)

which is the desired result.

We are now ready to bound the immediate regret rt = f(x∗)− f(xt) and prove Theorem 5.1.

Proof. By definition, xt = argmaxx
∑n

i=1 φ
(i)
t (xVi

). Therefore,
∑n

i=1 φ
(i)
t (xt

Vi
) ≥∑n

i=1 φ
(i)
t (x∗

Vi
). Developing the left hand side of this inequality with the expression of φt and

adding β
1
2
t

4a on both sides, we have

β
1
2
t

4a
+

n∑
i=1

µ(i)(xt
Vi
) + aβ

1
2
t σ

(i)
t (xt

Vi
)2 ≥ β

1
2
t

4a
+

n∑
i=1

φ
(i)
t (x∗

V′
i
)

≥ f(x∗) (40)

with (40) following from (39) with high probability. We can now upper bound the immediate regret
rt

rt = f(x∗)− f(xt)

≤ β
1
2
t

4a
+

n∑
i=1

µ(i)(xt
Vi
) + aβ

1
2
t σ

(i)
t (xt

Vi
)2 − f(xt)

=

n∑
i=1

µ(i)(xt
Vi
)− f(xt) + β

1
2
t

(
a

n∑
i=1

σ
(i)
t (xt

Vi
)2 +

1

4a

)

= µt(x
t)− f(xt) + β

1
2
t

(
aσ2

t (x
t) +

1

4a

)
(41)
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Combining the conclusion of Lemma F.1 with (41), we get

Pr

(
rt ≤ 2β

1
2
t

(
aσ2

t (x
t) +

1

4a

))
≥ 1− δ, (42)

which is the desired result.

G Synthetic Functions

In this section, we describe the synthetic functions constituting our benchmark in Section 6.1.

G.1 Six-Hump Camel Function

The Six-Hump Camel function is a 2-dimensional function defined by

f(x1, x2) =

(
−4 + 2.1x2

1 −
x4
1

3

)
x2
1 − x1x2 +

(
4− 4x2

2

)
x2
2. (43)

It is composed of n = 3 factors, with a MFS d̄ = 2. In our experiment, we optimize it on the rectangle
D = [−3, 3]× [−2, 2]. It has 6 local maxima, two of which are global with f(x∗) = 1.0316.

G.2 Hartmann Function

The Hartmann function is a 6-dimensional function defined by

f(x) =

4∑
i=1

αi exp

−
6∑

j=1

Aij (xj − Pij)
2

 , (44)

with α = (αi)i∈[1,4], A = (Aij)(i,j)∈[1,4]×[1,6] and P = (Pij)(i,j)∈[1,4]×[1,6] given as constants.

It is composed of n = 4 factors, with a MFS d̄ = 6. In our experiment, we optimize it on the
hypercube D = [0, 1]6. It has 6 local maxima and a global maximum with f(x∗) = 10.5364.

G.3 Powell Function

The Powell function is a function of an arbitrary number d = 4k of dimensions, defined by

f(x) = −
d/4∑
i=1

(x4i−3+10x4i−2)
2+5(x4i−1−x4i)

2+(x4i−2−2x4i−1)
4+10(x4i−3−x4i)

4. (45)

We chose to set k = 6, so that the resulting Powell function lives in a d = 24 dimensional space. It is
composed of n = 6 factors, with a MFS d̄ = 4. In our experiment, we optimize it on the hypercube
D = [−4, 5]24. It has a global maximum at x∗ = 0, with f(x∗) = 0.

G.4 Rastrigin Function

The Rastrigin function is a function of an arbitrary number d of dimensions, defined by

f(x) = −10d−
d∑

i=1

x2
i − 10 cos (2πxi) . (46)

We chose to set d = 100. We also chose to aggregate some factors to make the optimization problem
harder. The resulting Rastrigin function is composed of n = 20 factors, with a MFS d̄ = 5. In
our experiment, we optimize it on the hypercube D = [−5.12, 5.12]100. It has multiple, regularly
distributed local maxima, with a global maximum at x∗ = 0 and f(x∗) = 0.
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(a) (b) (c)

Figure 2: Performance achieved by the studied BO algorithms for (a) the 2d Six-Hump Camel
function, (b) the 6d Hartmann function and (c) the 100d Rastrigin function. The shaded areas indicate
the standard error intervals.

G.5 Additional Figures

Figure 2 depicts the performance of the studied BO algorithms on the synthetic functions not discussed
in Section 6.1.

Figure 2(a) reports the minimal regrets achieved by the solutions on the Six-Hump Camel (SHC)
function. Observe that in this specific example DEC-HBO obtains the best performance. This is due
to the simplicity of SHC. In fact, the SHC function satisfies all the assumptions made by DEC-HBO:
a MFS lower than 3 and a sparse factor graph. In this case, the variant of the max-sum algorithm
used by DEC-HBO is guaranteed to query argmaxφt at each time step t. Since DuMBO does not
offer stronger maximization guarantees in that case, it is outperformed by DEC-HBO. Still, note that
it exhibits competitive performance when compared to the remaining BO algorithms.

Figure 2(b) and 2(c) depict dynamics similar to Figure 1(a). In both cases, the ability to infer /
exploit a complex additive decomposition gives DuMBO a decisive advantage against the other
BO algorithms. As a consequence, it manages to outperform them, even in very high dimensional
input spaces (see Figure 2(c)). Note that ADD-GPUCB and DEC-HBO were not evaluated on the
Rastrigin function, as their execution time exceeded 24 hours because of the large dimensionality of
the function.

H Real-World Problems

In this appendix, we describe the real-world problems constituting our benchmark in Section 6.2.

H.1 Cosmological Constants

The cosmological constants problem consists in fine-tuning an astrophysics tool to optimize the
likelihood of some observed data. We chose to compute the likelihood of the galaxy clustering [44]
from the Data Release 9 (DR9) CMASS sample of the SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS). To compute the likelihood, we instrumented the cosmological parameter estimation
code CosmoSIS [45]1.

We used nine cosmological constants in our optimization task, going from the Hubble’s constant to
the mass of the neutrinos. If a BO algorithm provided a set of inconsistent cosmological constants, a
likelihood of y = −60 was returned.

Note that similar experiments were described in other works, such as [6, 13]. However, they were
conducted on another, older dataset, with a deprecated NASA simulator2. This makes the conducted
experiments painful to reproduce on a modern computer. Hopefully, CosmoSIS is well documented
and easier to install and instrument, so we conducted our experiment with CosmoSIS to make it easier
to replicate.

1https://cosmosis.readthedocs.io/en/latest/reference/standard_library/BOSS.html
2https://lambda.gsfc.nasa.gov/toolbox/lrgdr/
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Figure 3: Performance of the studied BO algorithms on the cosmological constants fine-tuning
problem.

Figure 4: The WLAN topology used in the Shannon capacity optimization experiment. The end-users
are depicted as black dots, the nodes as numbered blue circles and the associations between end-users
and nodes as thin gray lines. Two nodes are connected with a black line if they are within the radio
range of each other.

Figure 3 depicts the performance of the described BO algorithms on this problem. Note that, since
the objective function does not have an additive decomposition, ADD-DuMBO cannot be evaluated.
Although the objective function does not have an additive decomposition, DuMBO demonstrates its
competitiveness by achieving the best performance, along with ADD-GPUCB and TuRBO.

H.2 Shannon Capacity of a WLAN

The Shannon capacity [36] sets a theoretical upper bound on the throughput of a wireless commu-
nication, depending on the Signal-to-Interference plus Noise Ratio (SINR) of the communication.
Denoting by Si,j the SINR between two wireless devices i and j communicating on a radio channel
of bandwidth W (in Hz), the Shannon capacity C(Si,j) (in bits) is defined by

C(Si,j) = W log2 (1 + Si,j) . (47)

In this problem, we study a Wireless Local Area Network (WLAN) with end-users associated to
nodes streaming a continuous, large amount of data. The WLAN topology is depicted in Figure 4. It
is populated with 36 end-users, each one associated to one of the 12 depicted nodes. Note that each
node is within the radio range of at least two other nodes. This creates interference and, consequently,
reduces the SINRs between nodes and end-users.

Each node has an adjustable transmission power xi ∈ [100.1, 102.5] in mW (milliwatts). This task
consists in jointly optimizing the Shannon capacity (47) of each pair (node, associated end-user) by
tuning the transmission power of the nodes. That is, the objective function f is a 12-dimensional
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function defined by

f(x) =

12∑
i=1

∑
j∈Ni

C(Si,j), (48)

with Ni the set of end-users associated to node i.

A difficult trade-off needs to be found because a node cannot simply use the maximum transmission
power as this would cause a lot of interference for the neighboring nodes. Given a configuration
x ∈ D = [100.1, 102.5]12, the SINRs are provided by the well-recognized network simulator ns-
3 [46] that reliably reproduces the WLAN internal dynamics. The additive decomposition comprises
n = 12 factors, with a MFS of d̄ = 5, obtained by making the reasonable assumption that only the
neighboring nodes of node i (i.e. those within the radio range of node i) are creating interference for
the communications of node i.

H.3 Rover Trajectory Planning

This problem was also considered by [13, 47]. The goal is to optimize the trajectory of a rover from a
starting point s ∈ [0, 1]2 to a target t ∈ [0, 1]2, over a rough terrain.

The trajectory is defined by a vector of d = 60 dimensions, reshaped into 30 2-d points in [0, 1]. A
B-spline is fitted to these 30 points, determining the trajectory of the rover. The objective function to
optimize is

f(x) = −c(x)− 10(||x0,1 − s||1 + ||x59,60 − t||1), (49)

with c(x) the cost of the trajectory, obtained by integrating the terrain roughness function over the
B-spline, and the two L1-norms serving as incentives to start the trajectory near s, and to end it
near t.

I Performance Evaluation of the Early-Stopped Version of DuMBO

In this section, we evaluate the performance of ES-DuMBO and ES-ADD-DuMBO, the early-stopped
versions of DuMBO and ADD-DuMBO, respectively. Recall that the early-stopping procedure and
guarantees are described in Section 4.2. In this appendix, the solutions are early-stopped at the end
of the very first ADMM iteration. For the sake of readability, we only depict the performance of
DuMBO and ADD-DuMBO to compare them with their early-stopped versions.

Figure 5 depicts the performance of the early-stopped versions on the synthetic functions described in
Appendix G. Except for the SHC function (Figure 5(a)), the same dynamic can be observed. The early-
stopped versions ES-DuMBO and ES-ADD-DuMBO obtain slightly worse performance than their
counterparts DuMBO and ADD-DuMBO. However, they remain very competitive, as they outperform
the state-of-the-art decomposing BO algorithms in 3 out of 4 synthetic experiments. Regarding the
SHC function, the early-stopped versions achieve better performance than their counterparts. ES-
DuMBO even achieves similar performance than DEC-HBO. As an extension to this article, we plan
to work more on explaining this observation conceptually.

Figure 6 depicts the performance of the early-stopped versions on the real-world problems considered
in Appendix H. The three experiments report the same results as those observed for the synthetic
functions in Figure 5. ES-DuMBO and ES-ADD-DuMBO perform slightly worse than their counter-
parts, but they remain very competitive as they outperform DEC-HBO in all three experiments, and
ADD-GPUCB on the rover trajectory planning problem (Figure 6(c)). In the two remaining problems
(Figures 6(a), 6(b)), the early-stopped versions achieve better than or equivalent performance as
ADD-GPUCB.

These result demonstrate that, although the early-stopped version of DuMBO provides only minimax
guarantees on the maximization of φt, its excellent empirical performance along with its lower
execution time (compared to DuMBO) make it a very interesting solution in technological contexts
that cannot afford high computing capabilities.
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(a) (b)

(c) (d)

Figure 5: Performance achieved by the decomposing BO algorithms and the early-stopped versions of
DuMBO for (a) the 2d Six-Hump Camel function, (b) the 6d Hartmann function, (c) the 24d Powell
function and (d) the 100d Rastrigin function. The shaded areas indicate the standard error intervals.

(a) (b) (c)

Figure 6: Performance achieved by the decomposing BO algorithms and the early-stopped versions of
DuMBO for (a) the cosmological constants fine-tuning, (b) the maximization of the Shannon capacity
in a WLAN and (c) the trajectory planning of a rover. The shaded areas indicate the standard error
intervals.

J Wall-Clock Time

In this section, we provide wall-clock time measurements (excluding the evaluation time of the
objective function) of the described BO algorithms on a synthetic function (24d Powell) and a
real-world problem (WLAN) described in Appendices G and H respectively. The measurements were
taken using a server equipped with two Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, with 14
cores (28 threads) each.

Figure 7 gathers the wall-clock time measurements. Observe that DuMBO does not only offer very
competitive performance, it also exhibits a lower overhead when compared to the other decomposing
algorithms (DEC-HBO and ADD-GPUCB). However, SAASBO and TuRBO manage to get lower
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(a) (b)

Figure 7: Performance achieved by all the described BO algorithms (including the two versions of
DuMBO and their early-stopped alternatives) for (a) the 24d Powell synthetic function and (b) the
maximization of the Shannon capacity in a WLAN. The shaded areas indicate the standard error
intervals.

runtimes than DuMBO. This is not surprising since, by design, these methods have minimal overheads,
at the expense of any theoretical guarantees.

Nevertheless, observe that the early-stopped version of DuMBO, ES-DuMBO, also reaches very
good performance, with a significantly reduced response time. With ADD-DuMBO, observe that
having access to the true additive decomposition of the function also reduces the overhead of the
solution, since the decomposition does not need to be inferred anymore. Finally, observe that ES-
ADD-DuMBO, the early-stopped version of DuMBO when the additive decomposition is provided,
obtains similar results as TuRBO and SAASBO, with only a slightly larger runtime, especially on
the Powell synthetic function (Figure 7(a)). Therefore, we argue that DuMBO, due to its excellent
empirical performance and its satisfying runtime (thanks to its capacity to be early-stopped) is a
competitive solution even in critical applications where the response time needs to be low.
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