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Assessing the Performance of NOMA 1n a
Multi-Cell Context: A General
Evaluation Framework

Anthony Bardou", Jean-Marie Gorce", Senior Member, IEEE, and Thomas Begin

Abstract—Non-Orthogonal Multiple Access (NOMA) is a
Resource Sharing Mechanism (RSM) initially studied for 5G
cellular networks and brought back to the agenda for 6G
networks. While NOMA'’s benefit at the level of a single cell has
been properly established, assessing its performance at the scale
of a cellular network remains an open research problem. This is
mainly due to the inter-dependencies between scheduling, power
control and inter-cell interference. Some algorithms have been
proposed to optimize resource allocation in a multi-cell network,
but they require a perfect and unrealistic knowledge of the whole
channel states. In this paper, we leverage Bayesian Optimization
techniques to build a versatile evaluation framework, able to
assess the performance of multi-cell networks implementing a
large variety of RSMs under a minimal set of assumptions.
Subsequently, we illustrate how this evaluation framework can
be used to compare the performance of several well-known
RSMs under various fairness requirements and beamforming
efficiencies. Our results show that, among the RSMs studied on
a simple multi-cell network simulation, NOMA combined with a
full reuse policy consistently emerges as the one able to achieve
the highest end-users achievable rates under fairness constraints.

Index Terms—Cellular networks, NOMA, Bayesian optimiza-
tion, fairness.

I. INTRODUCTION

HARING radio resources is a key problem in cellular net-

works since their infancy. Inside each cell, multiple access
techniques exploit orthogonal resources (in time, frequency, or
codes) while inter-cell interference (ICI) is controlled through
sophisticated reuse policies. Typically, for second-generation
(2G) cellular networks, ICI was controlled through static
resource allocation based on graph coloring. For third gen-
eration (3G) cellular networks, ICI was mitigated by the use
of scrambling codes and by controlling the load factor of the
cells. For fourth generation (4G) cellular networks exploiting
Orthogonal Frequency-Division Multiple Access (OFDMA),
graph coloring strategies were enhanced with fractional fre-
quency reuse (FFR) [1], [2], [3] or even full-reuse policies
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[4]. Indeed, if graph coloring-based approaches provide high
signal-to-interference-plus-noise-ratio (SINR) to edge users,
they suffer from a strong reduction of the frequency bandwidth
available for each cell. Conversely, full reuse consists in
providing each cell with the full bandwidth in spite of the
potential high interference generated for edge users. Full reuse
has been shown to provide a higher network spectral efficiency
despite the low SINR associated with edge users (typically
below 0 dB). FFR was elaborated as a tradeoff between both
strategies, by considering the superposition of two classes of
users: inner users in the center of the cell, and edge users,
whose reuse strategy differs. Inner users exploit a fraction of
the spectrum in a full reuse scheme whereas a graph coloring
strategy on the remainder of the spectrum is applied for edge
users [2], [3].

During the elaboration of the fifth generation (5G), enhanc-
ing 4G capabilities, resource-sharing strategies based on
non-orthogonal multiple access (NOMA) techniques have
been extensively investigated [5], [6]. NOMA is a powerful
technique that has the potential to increase the multiple
access cellular network capacity [7] both in the downlink
and the uplink. NOMA relies on the well-known principle
of superposition coding (SC) elaborated for the Gaussian
broadcast channel (G-BC) where two (or more) data streams
are superposed [8]. In a 2-user NOMA, pairing a strong and
a weak user together (with respect to their channel quality)
greatly increases the cell’s capacity. In such a setup, and
unlike orthogonal multiple access (OMA), NOMA achieves
the Shannon capacity region bounds for the G-BC. The expres-
sion of this capacity for a single cell under massive access is
provided in [9] and shows the benefit of NOMA approaches
even with dealing with a limited number of superposed data
streams.

While NOMA has been shown to be a powerful strategy
at the scale of a single cell, its benefits at the scale of a
full network are not straightforward to establish. In particular,
its impact on the ICI and on the optimal User Equipment
(UE)-Base Station (BS) association has not yet been precisely
evaluated. In [10], the authors analyzed the disincentives for
the use of NOMA in 5G, and raised a few common myths
about NOMA, showing that: (i) NOMA can achieve a good
tradeoff between spectral efficiency and fairness; (ii)) NOMA is
not very complex to implement, at least when restricted to the
superposition of pairwise users; (iii) NOMA can be combined
with FFR strategies (contrary to a previous statement [11]).
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Because of these observations, optimizing non-orthogonal
resource-sharing mechanisms (RSMs) at the scale of a network
is a complex matter. However, if the transmission power
levels of each BS and the UE-BS associations are efficiently
optimized, then NOMA can let the cells breathe, thus bringing
more flexibility than classical intra-cell optimization while
remaining less complex than a cell-free approach as currently
investigated for sixth generation (6G) cellular networks [12].
This is why NOMA is still under evaluation for 6G [13].

However, the integration of NOMA in the future 6G cel-
lular networks requires firstly evidence that its benefit at the
system level is significant, and, secondly that realistic RSMs
algorithms and protocols can be developed. The first challenge
is inherently difficult as it depends on complex optimization
problems, as highligthed in [14] and [15].

The second challenge concerns the development of dis-
tributed RSMs algorithms that takes into account exact channel
realizations, channel state estimation, codes and instantaneous
performances. This line of research is very active and several
algorithms have been proposed [11], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. However the performance
metrics obtained in these references heavily depend on the
technical choices and the simulation parameters, making dif-
ficult to understand the specific benefit of NOMA.

In this context, our paper focuses on the first challenge
and proposes a general evaluation framework to assess the
performance of an arbitrary RSM in a multi-cell context.

In essence, this framework aims to optimize the parameters
of a cellular network implementing the RSM under evaluation
before collecting the RSM’s performance metrics. The frame-
work formulates the optimization of the cellular network as a
black-box optimization problem. This makes our framework
versatile, as it is able to find efficient configurations in the
cellular network under a minimal set of assumptions (e.g.,
regardless of the actual network topology or the interference
model in use). Then, we apply this framework to compare the
respective performance of several existing RSMs on a sim-
ulated, real-life-inspired cellular network. Our results tend to
show the superiority of NOMA (used in conjunction with a full
reuse policy) at finding the best tradeoffs between high UEs
rates, under various fairness requirements and beamforming
efficiencies.

It is worth noting that this paper does not propose an RSM
algorithm like those mentioned above [11], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25]. Our reasoning is closer
to the papers based on stochastic geometry, following the
seminal paper of Andrews et al. [26] that provides system-
level performance bounds.

The remainder of the paper is organized as follows. Sec-
tion II describes the methods previously proposed to evaluate
NOMA in a multi-cell context and motivates the need for a
general, agnostic evaluation framework for RSMs. Section III
introduces the optimization framework and its parameters.
Section IV describes the framework parameters chosen for
the conducted study. Section V illustrates the abilities of the
framework by comparing the performance of several RSMs
and provides insights on the performance of NOMA at the
cellular network scale. Finally, Section VI concludes the paper.
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II. NOMA-BASED RESOURCE-SHARING EVALUATION

Evaluating NOMA at the scale of a network is an impor-
tant but hard problem if we consider simultaneously power
transmission levels, UE-BS association, and NOMA encoding
ordering. In this paper, we consider power-domain NOMA that
we simply refer to as NOMA for the sake of brevity.

In [16] and more recently in [19], algorithmic solutions for
sum-power minimization - sum-rate maximization for multi-
cell networks with NOMA are investigated. In these papers,
the UE-BS association is fixed, and the proposed algorithms
jointly optimize the resource and power allocation to each
UE. The proposed strategies rely on a multi-level NOMA
over multiple resource blocks. The proposed approaches lever-
age the multiple degrees of freedom brought by NOMA.
However, in practice, these solutions would require a huge
amount of signaling between all UEs and BSs, making their
implementation challenging. In [17], an optimal algorithm is
studied for NOMA allocation in a single cell, on multiple
sub-bands, with a weighted sum-rate. This cost function may
include some notion of fairness, but the choice of individual
weights is complex. A less complex algorithm is proposed
by the same authors in [18]. In [20], advanced algorithms
are proposed for pure NOMA and mixed strategies in a
single cell configuration. These solutions are extended in [21]
to multi-cells and is complementary to [11]. Both contribu-
tions proposed an optimization of UEs association, power
and SIC ordering in the multi-cell network considering an
effective algorithm (and not to evaluate and compare RSMs
techniques as is the case of our paper). Among new RSMs
algorithms, it is worth mentioning [22], [25] that explore
NOMA massive access in the uplink as well as [23] and
[24] that use online algorithms and leverage mobile edge
computing.

In [27], the authors combine FFR and NOMA. They con-
sider a classical FFR and they superpose, on top of it, a third
category of UEs with low power. Unfortunately, this scheme
induces a higher complexity and does not prevent the loss of
performance already observed for FFR.

Another avenue to evaluate cellular networks is stochastic
geometry [26]. Based on spatial randomness, this powerful
analytical tool enables the computation of the distribution of
BS/UE radio links’ quality (e.g., rate or outage). Stochastic
geometry has been used to evaluate the impact of FFR mech-
anisms with OFDMA in [28] and [29]. However, modeling
NOMA in multi-cell was fully achieved, due to the complexity
of modeling SIC with random distribution of UEs. In [30], the
authors studied NOMA at a large scale but their results were
limited to SINR meta-distributions. The authors were able to
evaluate individual rates of UEs but not a global evaluation
of the sum-rates, as this would require the distribution of the
cell geometry as discussed in [31], which is generally hard to
determine. The more advanced contributions are [32] for the
uplink with Coordinated Multi-Point (COMP), [33] in cell-free
mode, or [34] which considers a scenario close to ours but
focuses on the coverage probability, which does not allow the
computation of the overall system capacity and UE individual
rates.
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The majority of existing studies focus on evaluating the
performance of a specific RSM under particular scenarios
and assumptions. However, even if all these approaches were
implemented, comparing the relative performance of different
RSMs would remain challenging due to the varying assump-
tions and constraints in each study. In this paper, we introduce
a general framework that leverages the flexibility of Bayesian
Optimization (BO) to accommodate nearly all existing RSMs
within arbitrary cellular networks comprising multiple cells.
This unified framework ensures a fair and consistent compar-
ison of the evaluated RSMs.

III. UNIFIED FRAMEWORK FOR THE
EVALUATION OF RSMs

A. Core Idea

To accurately assess the performance of any RSM for a
cellular network, it is essential to operate the RSM under
its optimal parameter configuration. Therefore, our evaluation
framework must be capable of optimizing the parameters of
existing RSMs, allowing a fair comparison of their respective
merits. That is why, at the core of the proposed evaluation
framework lies the following optimization problem:

maximize flx;T,P,R). (1)

The problem (1) comprises five core ingredients:

e the RSM R to evaluate (e.g., NOMA)

e the propagation model P (e.g., log-distance path loss,
accounting for beamforming, shadowing...),

o the cellular network topology T,

o the network parameters to optimize (e.g., the power levels
of the BSs), specified by a search space D,

e a scalar objective function f : D — R collecting the
performance of the cellular network specified by the
triplet (7,P,R) and parameterized by x € D.

These five ingredients are typically set by the performance
analyst and, together, they specify our optimization problem
(1). The goal of the evaluation framework is to solve (1) by
discovering * = arg max,.p f(x)! (note that the parameters
T, P and R have been omitted for the sake of brevity) with
the procedure explained in the next section. Finally, once
the cellular network is adequately configured for the RSM
R, key performance metrics can be collected and sent to
the performance analyst. Following this procedure for every
RSM R, the evaluation framework ensures that the same
performance metric f is optimized with the same algorithm .4
by tuning the same cellular network parameters x, successfully
avoiding the inconsistencies in RSMs evaluations raised in
Section II.

B. Bayesian Optimization

Optimizing the objective function f in (1) is generally a
challenging task. The ingredients D,7,P and R can have
complex, intricate, non-convex effects on the objective func-
tion f, making higher-order information (e.g., gradient V f,

'In this paper, f is assumed to be scalar. We postpone the extension of the
framework to vector-valued objective functions to future works.

Hessian V2 f, where V denotes the vector differential opera-
tor, also known as del) unavailable. Additionally, the lack of
a comprehensive, diverse and representative dataset mapping
the network parameters and the performance metrics prevents
the use of offline machine learning models (e.g., neural net-
works). Therefore, f can be treated as a black-box function,
which must be optimized in an online manner, where it is
simulatenously discovered and optimized. Due to the black-
box nature of f, traditional first-order optimization methods
such as gradient descent [35] are not applicable to the problem
(1). Since f is computed by collecting performance metrics
on the cellular network, it can also be considered expensive to
evaluate and noisy. Therefore, higher-order information cannot
be approximated by Monte-Carlo-based estimators [36]. In this
context, BO appears as a natural candidate to solve (1), as this
framework has been successfully applied to many black-box
optimization problems in a variety of domains [37], [38], [39].
In this section, we provide some background about BO and
introduce its core assumption.

A BO algorithm often leverages a Gaussian process (GP)
as a surrogate model [40] for the black-box objective function
f. A GP is a stochastic process, that is, a collection of
random variables {Y'(x)} . indexed by a set D. As its name
suggests, in a GP, any finite collection {Y (1), -+ ,Y (zx)}
has a joint multivariate Gaussian distribution. As such, it is
fully specified by its mean function u(x) = E[Y(x)] (we
assume p(x) = 0 without loss of generality) and its covariance
function k(x,z’) = E[(Y(x) — u(x)) (Y(2') — u(z’))].

For the objective function f to be reasonably modeled by a
GP, it only needs to be continuous. In fact, it is known that
any continuous scalar function on a compact subset of R? can
be approximated arbitrarily well by a GP posterior mean for
some covariance functions k. For more details, please refer to
[41].

As mentioned above, the versatility of the GP as a surrogate
model heavily relies on its covariance function k. In fact, a GP
can be a satisfying model for rough functions (e.g., by setting
k so that the GP is a Ornstein-Uhlenbeck process [42]) as well
as smooth ones (e.g., by setting k to be a Radial Basis Function
kernel [43]). Covariance functions can also be combined
with basic operators (e.g., summed or multiplied) to form
richer covariance functions that encode complex correlations
between objective function values.

Let X; = (@1, -+ ,x¢) be a t x d matrix of inputs (i.e., ¢
inputs of d dimensions) and y, = (f(x1) +¢€,--- , f(x:) +¢€)
be a corresponding #-dimensional vector of observed noisy
outputs, with € ~ N(0,02). Then, if f is a GP, f(z)| X, y, ~
N (pe(x), o} (x)) with

() = k' (@, X1)A My,
o(x) =k(z,x)— k' (z,X,)A; ' k(x, X,)

2
3)

where k(z, X,) = (k(z,2:));cpp g0 Ar = K¢ + 021, I is
the ¢ x ¢ identity matrix, K; = (kémz, mj))i,je[l,t] and where
' denotes the transpose of u.

At time t, a BO algorithm must find the next query
€1 € D such that f(ay1) is likely to be large, and
such that observing f(x;y1) brings information about the
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Algorithm 1 Proposed Evaluation Framework
Input: RSM R, propagation model P, network topology
T, network parameters domain D, black-box objective
function f, BO algorithm 5.
Output: key performance metrics M
t=20
Initialize the datasets X; = ), y, = ()
while 5 does not converge do
Use B and the datasets (X, y,) to find x¢ 4
Set the network parameters to sy
Collect Y41 = f(xt+1) + € on the network
Update the datasets X, = Xy U{xi11}, ¥, =
Yy U{yea}
end while
: Collect key performance metrics M on the network with
optimized parameters * € D
10: return: M

A O o e

9 *®

black-box f. This exploration-exploitation dilemma is usually
solved by maximizing an acquisition function ¢;(x). Many
acquisition functions exist, such as GP-UCB [44], Knowledge
Gradient [45], Probability of Improvement [46] and Expected
Improvement [47].

C. Evaluation Framework Algorithm

The proposed evaluation framework is given in Algorithm 1.
As previously described, Algorithm 1 solves the optimization
problem (1) with a BO algorithm B, before collecting the key
performance metrics on the optimized network and returning
them to the performance analyst.

In addition to the five main ingredients described in Section
III-A, the performance analyst must also provide a BO algo-
rithm B. In fact, depending on the problem specified by the
five main ingredients of the framework, some BO algorithms
may be more suited than others (e.g., high-dimensional BO
algorithms [48], batch BO algorithms [49]).

In the following sections, we illustrate the capabilities of
Algorithm 1 by providing valuable insights on the performance
of NOMA-based RSMs. Section IV describes how the main
ingredients of the framework (including the BO algorithm
B) are specified, while Section V provides and discusses the
results of our study.

IV. DESCRIPTION OF THE STUDY

In this section, we describe how the evaluation framework
proposed in Section III is used to produce key performance
metrics enabling the comparison between five different RSMs.
The study is conducted on a cellular network covering a
service area (2. It comprises a set of n BSs and a set of m
UE:s distributed over (2. Each UE is associated with the BS that
provides the highest SINR. Note that the evaluation framework
presented in Section III is agnostic to the UE-BS association
policy. In other words, it can be used without modification
to evaluate, at the scale of a cellular network, RSMs that
implements a different UE-BS association policy.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 25, 2026

A. Resource-Sharing Mechanisms R

In this study, we compare a set of five different RSMs that
comprises both classical RSMs used in cellular networks and
hybrid RSMs that combine NOMA with classical RSMs. Each
of them is illustrated in Figure 1 and briefly described in the
following.

The simplest studied RSM is the full reuse solution (FR)
used for 4G networks, which does not introduce any additional
mechanism to mitigate ICI. Another simple RSM is the
classical graph-coloring solution (COLORING) used for 2G
networks, which partitions the frequency band into chunks of
equal size and allocates different chunks to neighboring cells.
ICI is effectively mitigated, at the expense of a significant
shrinkage of the frequency band available for each UE. Next,
we consider the fractional frequency reuse solution (FFR),
which introduces an additional structure within each cell by
splitting it into an inner and an outer region. It allocates a
chunk of size 7 in the frequency band for the cells’ inner
regions while the cells’ outer regions share the remainder of
the frequency band (of size W —7) with a color-based solution.

We compare these RSMs with two NOMA-based RSMs,
where each BS exploits a 2-user NOMA technique.> With
NOMA, each cell is split into an inner and an outer region. SC
is used on the two regions, and SIC is performed by the inner
UEs to remove the interference due to the signals transmitted
to the outer UEs. On the one hand, NOMA+FFR combines FFR
and NOMA, following the concept proposed in [10]. The inner
UEs adopt a full reuse strategy, while the outer UEs adopt a
color-based strategy. On the other hand, NOMA+FR proposes
that all UEs (inner and outer) adopt a full reuse strategy.

Note that the chosen procedure used to split a cell into an
inner and an outer region is detailed in Appendix A.

B. Parameters D and Objective Function f

We consider a single transmission power level for each
region of the cellular network. For the RSMs FR and
COLORING, this naturally implies that each BS i (i € [1,n])
has a single transmission power level x;. We assume that
each BS has a minimal transmission power level of P_ and
a maximal transmission power level of P.. This leads to
a natural formulation for the optimization parameters x =
(z1, - ,x,) € D with

D=DW x...x DM = [P_ P,]". (4)

For the RSMs that split each cell into two regions, we
. S o (in) (out)
consider two transmission power levels p;, = (p, ’,p;
per BS i, i € [1,n]. Despite the relative simplicity of this
scenario, one can expect a significant capacity gain [9]. In this
formulation, each p; must also satisfy a power constraint, that

is P_ </||p;|l1 < Py, where || - ||, is the LP-norm such that

x|, = O, |xi|p)1/p. Furthermore, we enforce pz(-m) <
out

p, . It is worth noting that our proposed framework can

2 Although our framework imposes no theoretical limit on the number
of superposition levels, previous studies have shown [9] that increasing
the number of levels beyond two yields only moderate additional gains
while significantly increasing the complexity of resource allocation, decoding
algorithms, and the optimization process.
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FR COLORING FFR NOMA+FFR NOMA+FR

Inner Inner Inner

region region region
éuter Outer QOuter
region region region

L]
3
A T s | | R
w0 w0 w

Fig. 1. The studied RSMs illustrated on three adjacent hexagonal cells and the corresponding splitting of the frequency band of size W. Interference between

the top left cell’s regions and other regions are represented by black arrows.

accommodate any constraint on the optimization parameters
x as long as it can be embedded into a rectangular parameter
space.? In this study, we exploit the following bijection:

(out)

in ou mn ou D;
—_—— D; + p;

3

P;
23

Consequently, we consider that the cellular network param-
eters to optimize are @ = (1, - ,&,) € D with

DD(l)x~~-><D(”)([P_,P+]>< B1>) NG,

Having defined the parameter space D for the considered
RSMs, we turn to the specification of the objective function f.
Given a configuration x; of the cellular network, we consider
the achievable rate c/)(x;) of each UE j € [1,m] at time ¢,
with respect to the propagation model P (see Section IV-D),
as the main performance metric to optimize at the UE scale.*
Consequently, the performance metrics at the cellular network
scale are c(x¢) = (cW(xy), -+, ™ (xy)) € R™.

To turn these performance metrics into a scalar objective
value, we consider the a-fairness, introduced by [51]:

Zlogc,(fj) ifa=1,
j=1

e (6)
& (&)
—~—~——  otherwise,
: l—-«a
Jj=1

where, by a slight abuse of notation, C,Ej ) denotes ¢l )(x,).

Observe that (6) leads to natural trade-offs between the sum
of the rates in ¢; and the fairness of these rates. In fact, «
controls the importance of fairness in the objective function.
As examples, = 0 defines the sum-rate as the objective
function, o = 1 boils down to the proportional fairness and,
since limg ;400 Fia(Ct) = Minjgpy cgj), o — 400 can be
viewed as one of the most stringent definitions of fairness.

Fa(ct) =

3Otherwise, a constrained BO algorithm for 13 would be required (e.g., see
[50]).

4Note that other performance metrics, such as Energy Efficiency (EE), could
have been used in our framework as objective functions to optimize.

Because of its versatility, we use (6) as the objective
function of the cellular network. To derive the final form
of the objective function, it is essential to determine how
resources should be allocated among the UEs within the
same region. To avoid introducing an arbitrary policy that
could negatively impact the cellular network’s performance,
we adopt the optimal Time-Division Multiple Access (TDMA)
or scheduling policy for each region k within each cell. Given
a set A®) of m(*) UEs belonging to a region k, we define the
s

optimal scheduling policy s(*) = ( as the solution

7/ jeAm
of !
maximize F, (s ® cgk))
sE[O,l]m(k)
s.t. s'1=1 (7)
with cgk) = (cgj )) , 1 a conformable vector of ones and
jEAMR)

® the Hadamard product.

s is a vector of size m(*) that sums up to one. Intuitively,
its ith element is the fraction of time allocated to the ith UE
for transmission.

Proposition 1: The oStimal scheduling policy for a set A®*)

of UEs is s(¥) = (5(@ , with
T/ jeAw

1j:j* if = 0,

st = (") o (8)

otherwise,
(
ZieA(k> (Ct

Z)) (1—@)/04

with j* = arg max;c 4 ) and 1;_;- the indicator function
indicating if j is the index of the UE that has the largest rate
among the UEs in A%,

Proof (Sketch): The special case o = 0 is trivial to solve
as the solution to maximize the sum-rate is to find the UE that
has the largest rate and let it use the full resource.

For o # 0, the function in the constrained problem (7) is
concave with respect to s since it is a sum of concave functions
(see (6)). Therefore, it can be turned into an unconstrained
problem by considering its Lagrangian relaxation £, (s, \),
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and its solution is one of the critical points of L, found by
the criterion VL, = 0. The relaxation for o # 1 is

Lo(s,A\) =F, (s ©) c(k)) —A(s"1-1)

Z Sj—l . (9)

Computing the gradient VL, by differentiating (9) is trivial,
as is solving the system of equations VL, = 0 for s. It yields
a single critical point, which is the solution of (7) given in
(8). Applying the same technique to the special case o = 1
yields the same solution.

We can now derive the form of the objective function. Let
A= {AD ... A"} be the set of all regions in the cellular
network,> the objective function is

> Y F (s(k)(ac(j)(:nt))

AR e A je AR)

(10)
with F, and s*) given by (6) and (8), respectively.

C. BO Algorithm B

In the context of our study, the optimization problem
(1) may have up to 2n parameters for a cellular network
comprising n BSs (see Section IV-B). In the BO literature,
this problem is considered high-dimensional even for medium-
sized networks (say n > 7). Furthermore, we would like to
address the problem (1) in a decentralized fashion, as it would
ease the replication of this study in a real cellular network.

To do so, we rely on INSPIRE, the decentralized, high-
dimensional BO algorithm proposed in [37]. INSPIRE is
initially designed to optimize a 2n-dimensional proportional
fairness within a wireless local-area network (WLAN) com-
prising n nodes. The problem is addressed in a decentralized
fashion, under the assumption that the interference experienced
by a UE j associated with a node i is caused solely by a subset
of nodes, defined as a neighborhood of node i and denoted ;.

Note that the proportional fairness optimized by INSPIRE
is a special case (o« = 1) of the objective function (10).
Moreover, because (10) is based on the achievable rates of the
UEs (and hence, on their SINRs), considering that only the
neighborhood of BS i causes the interference of its associated
UEs is a mild assumption. Therefore, INSPIRE is a good
candidate for the black-box optimization of (10).

Assumption 1:

SIS

=1 A(k)cA; jeAk)

Fo(s® 0 c® @) an

with A; the regions controlled by BS i, a:(N) (zc (@)

and A; comprising all the BSs at radio range of BS i (1nclud1ng
BS i itself).

SNote that 7 = n or r = 2n depending on the considered RSM.
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To apply INSPIRE, we need an additive decomposition of
the objective function. Let us denote by |Aj| the cardinality
of N; and consider féi) : DWW 5 D, with DV =
[1;cn, D), such that

) = Y Y

PEN; A A, jEAR)

Ny
Fa(s® © (i)
Wil

(12)

Observe that fo(f) is an additive decomposition of (11). That
is, it is trivial to show that

m:gm@w»

We can now introduce the standard assumptions used in
decentralized BO, starting with the Lipschitz continuity.

Assumption 2: Vi € [1,n], fo(f) is Lipschitz continuous with
Lipschitz constant L9, that is

e,z € DN, | £ (2) — [ ()] < LV||2

13)

— CIIIHQ (14)

Intuitively, Assumption 2 implies that the rate of change of
(12) is bounded by L across its entire domain. Finally, we
introduce GPs as surrogate models for fq.

Assumption 3: ¥i € [1,n], F described with (12) is a
Gaussian process gp®W (0 £ (z, )) with , 2’ € DV,

With Assumption 3, each GP GPWisa surrogate model for
the corresponding term fé Assumption 3 naturally implies
that the objective function f itself is a GP, since a linear
combination of GPs is also a GP.

Under Assumptions 1, 2 and 3, INSPIRE (as described
in [37]) can be run in a decentralized fashion at every
BS. Note that, under these assumptions, INSPIRE finds the
global maximum of a tight lower bound of the objective
function f. Since INSPIRE is a BO algorithm, its compu-
tational complexity is in O(t3), where ¢ is the number of
observations.

D. Propagation Model P

1) Single Antenna: The radio spectrum bandwidth W is
shared among all BSs (accordingly to the RSM R) while,
locally, each BS shares its spectrum divided into resource
blocks (RBs) among all its associated UEs. The average radio
link gain between one BS i and one UE j is given by:
AT

2,9 )

9i,j = 9o " Sij (15)

where gg and « are the standard parameters of a distance-based
propagation model, s; ; stands for shadowing and d; ; is the
distance between the BS i and the UE j. It is worth mentioning
that this channel gain is an average gain for a given pair (4, j)
and does not consider random variations due to fading. The
impact of fading is discussed hereafter and in Appendix B,
where the effective SINR used in this paper is described and
motivated.

For each RSM R, we compute the SINRs using power
densities. Although this boils down to the well-known SINR
expressions for three of the considered RSMs (namely FR,
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TABLE 1

POWER DENSITIES OF THE INTERFERENCE CAUSED BY AN UE j’ (Asso-
CIATED WITH A BS 1) AND SUFFERED BY AN UE J (ASSOCIATED WITH
A BS OF THE SAME COLOR)

Region of UE j and UE j° Region of  Interference
UE j on same BS? UE ;' (dBm/Hz)
Inner 0
Yes Outer 0
Inner
No Inner 9i, ,p% /W
Outer 9i,jPs / 1%
R
Outer ute
N Inner 9i,5P] )/W
© (i)
Outer Kgi jps’ |W

COLORING and FFR described in Section IV-A), let us derive
the SINR expressions for the two NOMA-based RSMs.

Recall that, in these schemes, each BS has to classify its UEs
into two classes: strong UEs and weak UEs (see Appendix A).
Strong UEs are typically located around the BS whereas weak
UE:s tend to be located nearby the cell edge. Thus, the service
area of a BS can be divided into two regions: the inner region
containing all strong UEs and the outer region containing all
weak UEs. Addltronally, BS i must handle two transmission
power levels: p{"™ for strong UEs and p{®*") for weak UEs
(see Section I'V-B). Finally, observe that NOMA+FR is a special
case of NOMA+FFR with a number of colors K = 1 (see
Figure 1).

Following the SIC strategy, strong UEs first decode the
signal for weak UEs and cancel their interference, whereas
weak UEs decode only their own signal. Note that the latter
do not experience strong interference from inner UEs sig-
nals thanks to the chosen parameters domain (5) enforcing

(zn) < p(out)

The power density for an inner UE (res outer UE) asso-
crated with a BS i is simply given by dp1 =p )/ W (resp.
alp2 = K p(2) /W). Table I indicates the expression of the
interference power densities according to the UEs’ locations.
Observe that, in agreement with Figure 1, an inner UE does not
suffer interference resulting from transmissions to outer UEs of
the same cell (thanks to SIC). Conversely, an inner UE suffers
interference resulting from transmissions to UEs associated
to a different BS i (be they in the inner or outer region).
In that case, the transmission in the outer region causes an
9gi Jp2

interference of power density =/ mW?/Hz, but only applied
to a fraction W/K of the frequency band. Therefore, when
considering the average of the power density over the whole

frequency band of size W, it boils down to a power density of

1 gi P() 9gi I)()
it = —~—. Note that a more accurate allocation may

be do/ne by letting the BS allocate a RB in the sub-band with
the lowest interference to each of its inner UEs. This is kept
out of the scope of this paper.

The SINRs resulting from this strategy for an inner UE j
and an outer UE ;' associated with a BS i, denoted by ’y(m)

(out)

and ~y; >, respectively, are:

S

_ gi,jpgz) (16)

W;N + 3, o+ g0 () 4 piy
' eN\{:} 9i' 5 p

(out)

’yl ]
Kgi,j/pé’)

gll) + 674"7;/Kpgy))
17)

WiN + giyp\” + Diremngiy i (P

where N is the noise power density and ¢; ;- is equal to 1 if i
and ¢’ use the same color for outer UEs, and 0 otherwise.

The SINRs (16) and (17) correspond to effective SINRs as
described in detail in Appendix B. Then, for a given effective
SINR, the achievable rate of a UE j associated with a BS i
follows the model derived in Appendix B and is given by the
modified Shannon capacity [52]:

D) = e(vi,5) = W - wlogy (1 + Bi,5)

where W is the bandwidth used by the UE j. As the purpose
of this study is to illustrate the evaluation framework proposed
in Section III under a simple simulation model, we introduce
x and 3 to encapsulate the performance loss of a real system,
due to imperfect modulation, coding schemes, and imperfect
radio. Finally, we use 7; ; = min (%; j, Ymax) dB to prevent
cases where the SINR ~; ; computed with (16) and (17) is
diverging.

2) Extensions to Multi-Antennas: In the case of multi-
antennas equipments (both at the transmitter and the receiver),
4G Long-Term Evolution (LTE) and beyond standards allow
to increase the effective SINR and the associated capacity
by using a combination of diversity, multiplexing and Multi-
User Multiple Input Multiple Output (MU-MIMO). Our model
remains valid to study any specific transmission mode as
defined in [53]. In this case, (16) and (17) are replaced by

(in)

(18)

Yi,j
(1)

_ €09i,5P1 (19)

WiN +c23penngiy 9751 4 pd)

(out)

Vi,
coK gi it
04 Gi ' Po

57 ) + 6i,i’Kpg: ))
(20)

where ¢y and ¢, are the constant defined in Appendix B. The
constant ¢g (i.e., the receiver gain) is lower than the number of
reception antennas, while the interference rejection ¢ is lower
than 1 and its exact value depends on the beamforming strat-
egy as well as partial coordination in resource management
between BSs.

Furthermore, the simultaneous transmission of multiple
flows as proposed in some LTE modes, as described in
Appendix B, provides a capacity gain G,,, up to the number
of layers (or streams). With such multiplexing, (18) becomes

GmWiklogy(1+ By ). (21

WiN + gijpt” + ez Divenngiy 950 (P

D) = efy;5) =
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Fig. 2. Tllustration of the simulated cellular network, inspired by Orange’s
cellular deployment in Lyon. The blue rectangle depicts the subset of BSs
shown in Figure 6 while the red rectangle depicts the subset of the BSs used
to collect our performance metrics (see Figures 3, 4, 5 and Table III).

In this study we consider both beamforming gains and
interference rejection, but without multiplexing. In our model,
we set G, = 1 (no multiplexing gain), and c; = 1/cy with
Gp(co) € {0,3,6} where Gy(co) = 10logyo(co) (dB) in the
SINR of all UEs (see (19) and (20)).

E. Cellular Network Topology T

Finally, we specify the cellular network topology considered
in this study. We simulate the cellular network deployed in
the city of Lyon, France by the main French mobile network
operator (Orange). The precise locations of the BSs are made
publicly available by a French national agency [54].

We consider a Log-Gaussian Cox process to generate a
realistic spatial distribution of UEs that contains clusters and
empty regions. Let us describe briefly how we implemented
the process (for a thorough description, please refer to [55]).
The domain containing the cellular network is split into tiles
of 25 meters-long sides. For each tile k, a Gaussian random
variable X, ~ N(p1,0?) is sampled. Then Y}, the number of
UEs within the tile k, is sampled from a Poisson distribution
of intensity eX*, that is Y} ~ Pois(e*X*). Finally, Y}, UEs are
uniformly generated within the tile. In our scenario, we set
the parameters so that the process generated a set of UEs with
a global spatial density similar to the one observed in Lyon
(=~ 11,000 persons / km?). Then, a fraction of these UEs was
randomly selected according to the market share of Orange in
France (~ 38.5%). Finally, 10% of the UEs from this subset
were randomly selected to account for active UEs only.

Figure 2 illustrates the obtained cellular network, with 125
BSs and around 9,000 UEs. Note that, in the next section,
we collect and discuss performance metrics on the BSs (and
their associated UEs) located within the red rectangle, to limit
artifacts at the border of the simulated network.
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TABLE I
HOMEMADE SIMULATOR PARAMETERS

Name Value

Background noise N —160 dBm/Hz

Path Loss LogDistance (dyef = 1 km,
Lycse = 128.1 dBm, n = 3.76)

Bandwidth W 20 MHz

Beamforming gain Within [0, 6] dB

Shannon capacity coefs. k=pB=1

Maximal SINR ~max 27 dB

Optimization steps 110
GP covariance function k& Matérn (v = %) [43]
Acquisition function Expected Improvement [47]

TABLE III

FIRST, SECOND AND THIRD QUARTILES FOR UES’ RATES DISTRIBUTIONS
(IN MBPS) WHEN v = 2

Beamforming Gain

0dB 3 dB 6 dB

RSM Q25 Q50 Q75 Q25 Q30 Q75 Q25 Q30 Q75
FR 0.19 030 055 038 0.65 1.03 056 087 175
coL 0.15 022 040 0.8 029 051 021 036 0.63
FFR 0.18 030 057 029 047 0.80 040 062 1.09
NOMA+FFR 0.22 033 0.65 037 068 1.15 055 099 1.83
NOMA+FR 021 034 0.68 049 0.81 145 083 1.61 2.37

V. NUMERICAL RESULTS

In this section, we illustrate the proposed evaluation frame-
work (see Section III) by implementing all its ingredients
according to the specifications described in Section IV in our
homemade simulator to present insightful data about the per-
formance of NOMA in a multi-cell context. Table II collects
the main simulation parameters. Note that most of them are
kept as simple as possible to prioritize the interpretability of
our results. However, since the objective function is treated
as a black box, our performance evaluation framework can
be utilized to address “what if” scenarios under different
conditions or combined with a more realistic simulator. More
specifically, we study the distribution of the UEs’ spectral
efficiencies, the distribution of their achievable rates (see (18))
and the quality of the capacity-fairness tradeoff made by each
RSM at the cellular network scale.

First, let us study the distribution of the UEs’ spectral
efficiencies. Figure 3 depicts their cumulative distribution
functions (CDFs), for each considered RSM, different fairness
constraints « (see (6)) and beamforming gains. Although
the fairness constraint « has virtually no effect on the
CDFs, the benefits of using beamforming are substantial. In
fact, the spectral efficiencies directly depend on the UEs’
SINRs (see (18)), which get larger when the beamforming
gain increases. This is illustrated by the right shift experienced
by the CDFs as the beamforming gain increases. Finally, as
one could expect, the RSMs exploiting orthogonal resources
(COLORING and FFR) are the most spectrally efficient. This
can be deduced by observing that the corresponding CDFs are
consistently the lowest ones for a given spectral efficiency.
Note that this is no guarantee of a larger achievable rate, as
these RSMs allocate only fractions of the available bandwidth
to each of their UEs.
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Fig. 3. The cumulative distribution functions of the UEs’ spectral efficiencies (expressed as log,(1 + SINR)) in the simulated cellular network, for each
RSM, several fairness constraints o (column-wise) and multiple beamforming gains (row-wise). Note that for each plot, the x-axis is in log-scale.
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Fig. 4. The cumulative distribution functions of the UEs’ Shannon capacities in the simulated cellular network (in Mbps), for each RSM, several fairness
constraints a (column-wise) and multiple beamforming gains (row-wise). Note that for each plot, the x-axis is in log-scale.

We now turn to the distribution of the UEs’ achievable
rates. Figure 4 depicts the CDFs of the UEs’ rates, for

each considered RSM, different fairness constraints « and
beamforming gains. As one could expect, the distribution
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Fig. 5. The performance of each RSM in terms of sum rate and fairness (Jain). Each plot corresponds to a different value of the beamforming gain. By
changing the value of «, Pareto fronts appear in the output space and allow the comparison between RSMs.
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Fig. 6. A subset of the cellular network configured by the best configurations of NOMA+FULL_REUSE, found by INSPIRE for a beamforming gain of 3 dB
and several values of . Each BS is shown with a red dot. Each cell is depicted with the convex hull of its associated UEs. Finally, the shaded areas depict

the inner regions of the cells.

of rates among UEs is more spread when the fairness con-
straint « is low, and more concentrated when « is large.
As an example, observe at the top row of Figure 4 that the
distributions’ supports spread over no less than eight orders
of magnitude when a = 0.25 (from 1076 to 10?> Mbps)
while they only cover 3 orders of magnitude when o = 2
(from 10~! to 10' Mbps). Additionally, and similarly to the
spectral efficiency (see Figure 3), increasing the beamforming
gain significantly improves the rates. Finally, observe that
the CDF of NOMA+FULL_REUSE is consistently the lowest
among all the CDFs. This intuitively translates into the fact
that NOMA+FULL_REUSE systematically ensures better (i.e.,
larger) rates for its UEs.

For a comparison between RSMs that is more quantitative
than what Figure 4 allows, we provide Table III. The 25%,
50% and 75% quantiles of the UEs’ rates distributions are
reported for each considered RSM, beamforming level and
a fairness constraint @ = 2. The best quantile value among
all RSMs is written in bold. NOMA+FULL_REUSE consis-
tently appears as the RSM providing the best rate for all

beamforming gains and all quantiles reported, sometimes by
a considerable margin.

To further study the rate-fairness tradeoffs achieved by the
RSMs, we consider a 2-dimensional space, called the output
space, with the average sum rate per cell and the fairness
(according to Jain’s index [56]) as dimensions. By varying
«, one can compare how the achieved tradeoffs evolve when
the incentive for a fair distribution of the rates changes. These
trajectories draw Pareto fronts in the output space, and Pareto-
dominance [57] can be used to rank the RSMs. Figure 5
depicts the performance of the RSMs in the output space,
for several beamforming gains. Observe that the NOMA-
based RSMs appear to find better tradeoffs than FFR and
COLORING across all the considered values of a and all
beamforming gains. They also appear equivalent to FULL
REUSE when no beamforming gain is considered (except for

= 2 where they manage to get better rates and fairness
than all the other RSMs). With positive beamforming gains,
NOMA+FULL_REUSE Pareto-dominates all the other RSMs
(including NOMA+FFR), for almost all the considered values
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of «a. In accordance to the CDFs observed in Figure 4 and to
the values reported in Table III, FFR and COLORING obtain
significantly lower performance metrics, while FULL REUSE
gets slightly lower performance metrics than NOMA+FFR.

Finally, Figure 6 shows a subset of the cellular network
corresponding to the blue rectangle in Figure 2, for the
NOMA+FULL_REUSE mechanism. The impact of the fairness
constraint « on the cells’ geometry can be easily visualized:
the larger the value of «, the bigger the inner regions of the
cells. Note that, because the cells are depicted with the convex
hulls of their associated UEs, some cells may overlap in the
visualization.

Overall, our results suggest that NOMA combined with a
full-reuse policy (denoted NOMA+FULL_REUSE in our exper-
iments) consistently emerges as the RSM that finds the best
tradeoff between a large sum of rates and a large fairness. This
may be an important piece of information when designing the
next-generation of cellular networks.

VI. CONCLUSION

In this paper, we proposed a general framework to fairly
evaluate an arbitrary RSM in a complex, multi-cell context.
Such evaluations cannot be handled by classical tools based on
stochastic geometry, or on algorithmic designs, due to unre-
alistic knowledge requirements or prohibitive computational
costs. Unlike these, our framework allows the evaluation of
an arbitrary RSM by solving a difficult optimization problem
under a minimal set of assumptions. To address this challenge,
we leveraged recent advances in the black-box optimization
literature by exploiting a distributed BO algorithm. The use
of a BO algorithm ensures the desired versatility of our
framework (i.e., no specific assumptions about the cellular
network or the interference model in use). In fact, the proposed
evaluation framework could be paired to any simulator or
implemented on a real-life network.

Using this evaluation framework, we compared five RSMs:
full reuse, graph coloring, FFR, a combination of NOMA
with FFR and a combination of NOMA with full reuse,
under several levels of fairness (i.e., several values of «) and
multiple beamforming gains on a real-life inspired scenario
for the locations of BSs and UEs. Our results showed that
the combination of NOMA with a full reuse policy is able to
consistently find better tradeoffs (with respect to sum rate and
fairness) than the other RSMs, sometimes by a comfortable
margin. We believe that the proposed framework can be of
interest to mobile network operators (MNOs) for comparing
the efficiency of RSMs on their cellular network deployments.
In particular, it is up to MNOs to decide whether the gains
brought by NOMA are substantial in light of its additional,
though limited, complexity in the case of a 2-user NOMA.

In future work, we plan to replicate the study conducted in
Sections IV and V using Monte-Carlo simulations instead of
a homemade simulator to provide more complete and realistic
insights on the performance of NOMA at the system level.
Also, we plan to extend our framework to handle dynamic
scenarios where UEs are moving and subject to birth-and-
death processes. The BO algorithm in use (denoted 5 in the
previous sections) would need to be refined, in particular, to

Graphic view of the cell

End-users

End-users (sorted by SNRs)
LT Tss 2 [1]0]

Best SNR ‘B*
threshold

Inner region

Fig. 7. An illustration of how a cell is split into two regions based on the
SNRs of its associated UEs. The cell is shown as an hexagon, the inner region
as a red circle and the outer region as the complementary of the circle in the
hexagon. The BS is at the center of the cell, and each UE is shown as a black
dot.

manage the potential staleness of previously collected data
(e.g., by applying techniques described in [58] and [59]).
Compared to state-of-the-art algorithms, such an approach
would allow the cells to breathe as a function of their local
traffic load (an idea that was used for 3G networks), adapting
over time the UEs/BSs association. This is an important feature
to contribute to cell-free solutions with limited complexity, as
currently investigated for 6G networks.
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APPENDIX A
SPLITTING A CELL INTO TWO REGIONS

In this appendix, we describe how we compute the set of
all regions A, that is, how the UEs are associated with their
BSs and distributed over the two regions of each cell.

First, recall that given a configuration x; € D, each UE
associates with the BS that provides the best SINR.

Then, within each cell i, the optimal 2-partition of the set
of associated UEs (i.e., the one that maximizes (10) within
the cell) must be computed. Note that since each UE j knows
its SINR with its BS, its achievable rate ¢(¥) and, a fortiori,
the objective function (10) within the cell can be computed.
Because there exist 2™’ ~1 — 1 partitions if the cell i contains
m(9) UEs, using a greedy algorithm that explores all the
partitions would be prohibitive.

To circumvent this combinatorial problem, all the associated
UEs are sorted by SNR in descending order. Then, the set of
UEs is partitioned based on a SNR threshold /3: the UEs with a
SNR larger than /3 are associated with the inner region, while
the others are associated with the outer region. The objective
function (10) is computed for all the m —1 2-partitions of
the list of ordered SNRs in order to determine 3*, which is the
SNR threshold associated with the 2-partition that yields the
largest value of (10). Figure 7 illustrates how §* is computed.

APPENDIX B
UES’ EFFECTIVE SINRS AND RATES

4G and beyond networks use OFDMA to share the resources
with multiple UEs. The spectrum is divided in several Physical
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Resource Blocks (PRB) and each UE gets a subset of PRBs. In
most real environment the channel gain associated to each PRB
is entailed by variations due to fading. Thus the channel gain
between each Tx-Rx pair g;; is subject to random variations
which impacts the SINR and the associated rates. In the
context of LTE, as described in [60], a transmission over
multiple PRBs is performed across many channel states. Under
standard assumptions on the joint stationarity and ergodicity
of the channel coefficients and under perfect channel state
information at the receiver (CSIR), the achievable rate of an
UE is commonly characterized as the ergodic achievable rate
[61]. For a given UE, in a given scenario (active BSs are fixed),
the ergodic capacity characterizing an achievable rate is upper
bounded, treating interference as noise [62], with

Gijdp(i)

N+ Yienpy Grgdp™
(22)

R;; <CE [’Yz‘j]) =log, | 1+

where G;; = E[g;;] and dp' is the power spectral density.
The other notations are consistent with the rest of the paper.

This bound is not always achievable and in [61], following
[63], and exploiting Jensen inequality, the multi-RB ergodic
rate is lower bounded by:

E[¢;)°
N + Var[Qj] + Zi’e/\f\{i} E “Czc'gP]
(23)

1+

R;; > log,

where (;; are the amplitude of the random received signal,
according to the notations detailed in [61].

Based on this analysis, we define an effective SINR, that
can be made close to the upper bound:

CUQi,ij)
WN + c19;,;pD) + c2 Zi’e/\/\{z‘} gir jp))

where cp,c; and cy are tuning parameters representing the
receiver gain (c¢o > R,, where R, is the number of received
antennas), the maximal SINR leakage due to self-interference
(c1 £1) and the interference rejection gain (co < 1).
Equations (16) and (17) in Section IV-D.1 are directly
derived from this effective SINR expression, using p(9) =
W -dp™ and (co, c1, c2) = (1,0,1) for the sake of simplicity.
This effective SINR model can be extended to MIMO
scenarios according to the modes used in 4G and 5G standards.
Taking Release 13 of the 3GPP as a reference [53], several
transmission modes are defined for the Physical Downlink
Shared Channel (PDSCH). We describe a few of them below:

e Mode 1 is single antenna; in this case, the former model
holds. Diversity may be used at the receiver. Usually, the
receiver has between 2 to 4 active antennas.

e Modes 2, 3 and 4 use diversity with precoding. Conse-
quently, ¢; can be reduced in (24).

e Mode 4 also proposes closed-loop spatial multiplexing.
in this mode the multiple antennas are used to transmit
multiple data flows simultaneously to the same UE.
Appropriate signaling may help to select the precoders
to maximise the SINR of the multiple flows. While in

Vi = (24)
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4G it was possible to multiplex up to 2 stream, 5G offers
the opportunity to multiplex up to 8 data streams

e Mode 5 is MU-MIMO and allows to transmit simultane-
ously to multiple UEs.

While the modes based on diversity are compatible with
our model, both closed-loop multiplexing and MU-MIMO
introduce an additional gain. Indeed, the transmitter optimizes
the beam selection to maximize the SINR (fading reduction),
but also to multiplex simultaneous transmissions, allowing to
increase the overall capacity. The former SINR formulation
remains correct with better coefficients ¢y, ¢; and co but
it also allows to increase the capacity given in (18) with a
multiplexing factor (up to 8 in 5G), as given in (21).
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